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The Black-Scholes Model (continued)
The discounted value process is

Ṽt(H) = e−rtVt(H)

and the interest rate is r. So

dṼt(H) = −re−rtdt.Vt(H) + e−rtdVt(H)

(since e−rt has finite variation, this follows from the integration-by-parts
formula

d(XY )t = XtdYt + YtdXt +
1

2
d⟨X, Y ⟩t

– the quadratic covariation of a finite-variation term with any term is zero,
so there is no extra term)

= −re−rtHt.Stdt+ e−rtHt.dSt

= Ht.(−re−rtStdt+ e−rtdSt)

= Ht.dS̃t

(S̃t = e−rtSt, so dS̃t = −re−rtStdt+ e−rtdSt as above): for H self-financing,

dVt(H) = Ht.dSt, dṼt(H) = Ht.dS̃t,

Vt(H) = V0(H) +

∫ t

0

HsdSs, Ṽt(H) = Ṽ0(H) +

∫ t

0

HsdS̃s.

Now write U i
t := H i

tS
i
t/Vt(H) = H i

tS
i
t/ΣjH

j
t S

j
t for the proportion of the

value of the portfolio held in asset i = 0, 1, · · · , d. Then ΣU i
t = 1, and

Ut = (U0
t , · · · , Ud

t ) is called the relative portfolio. For H self-financing,

dVt = Ht.dSt = ΣH i
tdS

i
t = VtΣ

H i
tS

i
t

Vt

.
dSi

t

Si
t

,

or
dVt = VtΣU

i
tdS

i
t/S

i
t .

Dividing through by Vt, this says that the return dVt/Vt is the weighted
average of the returns dSi

t/S
i
t on the assets, weighted according to their pro-

portions U i
t in the portfolio.
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Note. Having set up this notation (that of [HP]) – in order to be able if
we wish to have a basket of assets in our portfolio – we now prefer – for
simplicity – to specialise back to the simplest case, that of one risky asset.
Thus we will now take d = 1 until further notice.

Arbitrage. This is defined as in discrete time: an admissible (Vt(H) ≥ 0
for all t) self-financing strategy H is an arbitrage (strategy, or opportunity)
if

V0(H) = 0, VT (H) > 0 with positive P -probability.

The market is viable, or arbitrage-free, or NA, if there are no arbitrage op-
portunities.

We see first that if the value-process V satisfies the SDE

dVt(H) = K(t)Vt(H)dt

– that is, if there is no driving Wiener (or noise) term – then K(t) = r,
the short rate of interest. For, if K(t) > r, we can borrow money from the
bank at rate r and buy the portfolio. The value grows at rate K(t), our debt
grows at rate r, so our net profit grows at rate K(t)− r > 0 – an arbitrage.
Similarly, if K(t) < r, we can invest money in the bank and sell the portfolio
short. Our net profit grows at rate r −K(t) > 0, risklessly – again an arbi-
trage. We have proved the

Proposition. In an arbitrage-free (NA) market, a portfolio whose value
process has no driving Wiener term in its dynamics must have return rate r,
the short rate of interest.

We restrict attention to arbitrage-free (viable) markets from now on.
We now consider tradeable derivatives, whose price at expiry depends

only on S(T ) (the final value of the stock) – h(S(T )), say, and whose price
process Πt depends on the asset price St in a smooth way: for some smooth
function F ,

Πt := F (t, St).

The dynamics of the riskless and risky assets are

dBt = rBtdt, dSt = µStdt+ σStdWt,

where µ, σ may depend on both t and St:

µ = µ(t, St), σ = σ(t, St).
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By Itô’s Lemma,

dΠt = F1dt+ F2dSt +
1

2
F22(dSt)

2

(since t has finite variation, the F11- and F12-terms are absent as (dt)2 and
dtdSt are negligible with respect to the terms retained)

= F1dt+ F2(µStdt+ σStdWt) +
1

2
F22(σStdWt)

2

(since the contribution of the finite-variation term in dt is negligible in the
second differential, as above)

= (F1 + µStF2 +
1

2
σ2St

2F22)dt+ σStF2dWt

(as (dWt)
2 = dt). Now Π = F , so

dΠt = Πt(µΠ(t)dt+ σΠ(t)dWt),

where

µΠ(t) := (F1 + µStF2 +
1

2
σ2S2

t F22)/F, σΠ(t) := σStF2/F.

Now form a portfolio based on two assets: the underlying stock and the
derivative asset. Let the relative portfolio in stock S and derivative Π be
(US

t , U
Π
t ). Then the dynamics for the value V of the portfolio are given by

dVt

Vt

= US
t

dSt

St

+ UΠ
t

dΠt

Πt

= US
t (µdt+ σdWt) + UΠ

t (µΠdt+ σΠdWt)

= (US
t µ+ UΠ

t µΠ)dt+ (US
t σ + UΠ

t σΠ)dWt,

by above. Now both brackets are linear in US, UΠ, and US + UΠ = 1 as
proportions sum to 1. This is one linear equation in the two unknowns
US, UΠ, and we can obtain a second one by eliminating the driving Wiener
term in the dynamics of V – for then, the portfolio is riskless, so must
have return r by the Proposition, to avoid arbitrage. We thus solve the two
equations

US + UΠ = 1

USσ + UΠσΠ = 0.

3



The solution of the two equations above is

UΠ =
σ

σ − σΠ

, US =
−σΠ

σ − σΠ

,

which as σΠ = σSF2/F gives the portfolio explicitly as

UΠ =
F

F − SF2

, US =
−SF2

F − SF2

.

With this choice of relative portfolio, the dynamics of V are given by

dVt/V = (US
t µ+ UΠ

t µΠ)dt,

which has no driving Wiener term. So, no arbitrage as above implies that
the return rate is the short interest rate r:

US
t µ+ UΠ

t µΠ = r.

Now substitute the values (obtained above)

µΠ =
F + µSF2 +

1
2
σ2S2F22

F
, US =

−SF2

F − SF2

, UΠ =
F

F − SF2

in this no-arbitrage relation:

−SF2

F − SF2

.µ+
F

F − SF2

.
F1 + µSF2 +

1
2
σ2F22

F
= r.

So

−SF2µ+ F1 + µSF2 +
1

2
σ2S2F22 = rF − rSF2,

giving

F1 + rSF2 +
1

2
σ2S2F22 − rF = 0. (BS)

This is the celebrated Black-Scholes partial differential equation (PDE) of
1973, and proves one of the central results of the subject:

Theorem (Black-Scholes PDE). In a market with one riskless asset Bt

and one risky asset St, with short interest-rate r and dynamics

dBt = rBtdt,

dSt = µ(t, St)Stdt+ σ(t, St)StdWt,
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let a contingent claim be tradeable, with price h(ST ) at expiry T and price
process Πt := F (t, St) for some smooth function F . Then the only pricing
function F which does not admit arbitrage is the solution to the Black-Scholes
PDE with boundary condition:

F1(t, x) + rxF2(t, x) +
1

2
x2σ2(t, x)F22(t, x)− rF (t, x) = 0, (BS)

F (T, x) = h(x). (BC)

Corollary. The no-arbitrage price of the derivative does not depend on the
mean return µ(t, .) of the underlying asset, only on its volatility σ(t, .) and
the short interest-rate.

The Black-Scholes PDE may be solved analytically, or numerically. We
give an alternative probabilistic approach below.
Note: Partial Differential Equations (PDEs). The most important PDEs en-
countered in Mathematics or Physics (or Finance!) are linear PDEs of second
order (involving partial derivatives of first or second order only). These may
be classified, in a way analogous to the classification of conics or conic sections
(whose equations are algebraic of second order), into three broad categories:
Elliptic PDEs – prototype, Laplace’s equation

∂2u/∂x2 + ∂2u/∂y2 = 0

(or Poisson’s equation, with 4πρ on RHS) in electromagnetism or potential
theory;
Parabolic PDEs – prototype, the heat equation

∂2u/∂x2 + ∂2u/∂y2 = κ−1∂u/∂t;

Hyperbolic PDEs – prototype, the wave equation

∂2u/∂x2 + ∂2u/∂y2 = c−2∂u/∂t2.

The Black-Scholes PDE is parabolic, and can be transformed into the heat
equation, whose solution can be written down in terms of an integral and the
heat kernel. This is the same as the probabilistic solution obtained below.
Note. 1. Black and Scholes were classically trained applied mathematicians.
When they derived their PDE, they recognised it as parabolic. After some
months’ work, they were able to transform it into the heat equation. The
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solution to this is known classically.1 On transforming back, they obtained
the Black-Scholes formula.

The Black-Scholes formula transformed the financial world. Before it (see
Ch. I), the expert view was that asking what an option is worth was (in ef-
fect) a silly question: the answer would necessarily depend on the attitude
to risk of the individual considering buying the option. It turned out that –
at least approximately (i.e., subject to the restrictions to perfect – friction-
less – markets, including No Arbitrage – an over-simplification of reality)
there is an option value. One can see this in one’s head, without doing any
mathematics, if one knows that the Black-Scholes market is complete. So,
every contingent claim (option, etc.) can be replicated, in terms of a suitable
combination of cash and stock. Anyone can price this:
(i) count the cash, and count the stock;
(ii) look up the current stock price;
(iii) do the arithmetic.
2. The programmable pocket calculator was becoming available around this
time. Every trader immediately got one, and programmed it, so that he
could price an option (using the Black-Scholes model!) in real time, from
market data.
3. The missing quantity in the Black-Scholes formula is the volatility, σ. But,
the price is continuous and strictly increasing in σ (options like volatility!).
So there is exactly one value of σ that gives the price at which options are
being currently traded. The conclusion is that this is the value that the mar-
ket currently judges σ to be. This is the value (called the implied volatility
that traders use.
4. Because the Black-Scholes model is the benchmark model of mathematical
finance, and gives a value for σ at the push of a button, it is widely used.
5. This is despite the fact that no one actually believes the Black-Scholes
model! It gives at best an over-simplified approximation to reality. Indeed,
Fischer Black himself famously once wrote a paper called The holes in Black-
Scholes.

1See e.g. the link to MPC2 (Mathematics and Physics for Chemists, Year 2) on my
website, Weeks 4, 9. The solution is in terms of Green functions. The Green function for
(fundamental solution of) the heat equation has the form of a normal density. This reflects
the close link between the mathematics of the heat equation (J. Fourier (1768-1830) in
1807; Théorie analytique de la chaleur in 1822) and the mathematics of Brownian motion,
which as we have seen belongs to the 20th Century. The link was made by S. Kakutani
in 1944, and involves potential theory.
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6. This is an interesting example of theory and practice interacting!
7. Black and Scholes has considerable difficulty in getting their paper pub-
lished! It was ahead of its time. When published, and its importance under-
stood, it changed its times.

§3. The Feynman-Kac Formula, Risk-Neutral Valuation and the
Continuous Black-Scholes Formula

Suppose we consider a SDE, with initial condition (IC), of the form

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ), (SDE)

Xt = x. (IC)

For suitably well-behaved functions µ, σ, this SDE will have a unique solution
X = (Xs : t ≤ s ≤ T ), a diffusion. We refer for details on solutions of SDEs
and diffusions to an advanced text such as [RW2], [RY], [KS].

Taking existence of a unique solution for granted for the moment, consider
a smooth function F (s,Xs) of it. By Itô’s Lemma,

dF = F1ds+ F2dX +
1

2
F22(dX)2,

and as (dX)2 = (µds+ σdWs)
2 = σ2(dWs)

2 = σ2ds, this is

dF = F1ds+F2(µds+σdWs)+
1

2
σ2F22ds = (F1+µF2+

1

2
σ2F22)ds+σF2dWs.

(∗)
Now suppose that F satisfies the PDE, with boundary condition (BC),

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2F22(t, x) = 0 (PDE)

F (T, x) = h(x). (BC)

Then the above expression for dF gives

dF = σF2dWS,

which can be written in stochastic-integral rather than stochastic-differential
form as

(T,XT ) = F (t,Xt) +

∫ T

t

σ(s,Xs)F2(s,Xs)dWs.
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The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that Xt = x, and writing
Et,x for expectation with value x and starting-time t,

F (t, x) = Et,xF (T,XT ).

Writing the price at expiry T as h(XT ) as before, this gives

F (t, x) = Et,xh(XT ) :

Theorem (Feynman-Kac Formula). The solution F = F (t, x) to the
PDE

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2(t, x)F22(t, x) = 0 (PDE)

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = Et,xh(XT ), (FK)

where X satisfies the SDE

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ) (SDE)

with initial condition Xt = x.

Now replace µ(t, x) by rx, σ(t, x) by σx in the Feynman-Kac formula
above. The SDE becomes

dXs = rXsds+ σXsdWs (∗∗)

– the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of µ (which disappeared in the Black-Scholes
result). The PDE becomes

F1 + rxF2 +
1

2
σ2x2F22 = 0,

which is the Black-Scholes PDE except that there the LHS above is rF rather
than 0. So we can study solutions to the Black-Scholes PDE by Feynman-
Kac methods, by returning to the proof of the Feynman-Kac formula and
replacing F1 + rxF2 +

1
2
x2F22 in (∗) by rF :

dF = rFds+ σF2dWs, F (T, s) = h(s).
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We can eliminate the first term on the right by discounting at rate r: write
G(s,Xs) := e−rsF (s,Xs) for the discounted price process. Then as before,

dG = −re−rsFds+ e−rsdF = e−rs(dF − rFds) = e−rs.σF2dW.

Then integrating, G is a stochastic integral, so a martingale: the discounted
price process G(s,Xs) = e−rsF (s,Xs) is a martingale, under the measure P ∗

giving the dynamics in (∗∗). This is the measure P we started with, except
that µ has been changed to r. Thus, G has constant P ∗-expectation:

E∗
t,xG(t,Xt) = E∗

t,xe
−rtF (t,Xt) = e−rtF (t, x) = E∗

T,xe
−rTF (T,XT ) = e−rTh(XT ) :

Theorem (Risk-Neutral Valuation Formula). The no-arbitrage price
of the claim h(ST ) is given by

F (t, x) = e−r(T−t)E∗
t,xh(ST ),

where St = x is the asset price at time t and P ∗ is the measure under which
the asset price dynamics are given by

dSt = rStdt+ σ(t, St)StdWt.

Corollary. In the Black-Scholes model above, the arbitrage-free price does
not depend on the mean return rate µ of the underlying asset.

Comments.
1. Risk-neutral measure. We call P ∗ the risk-neutral probability measure. It
is equivalent to P (by Girsanov’s Theorem – the change-of-measure result,
which deals with change of drift in SDEs – see Week 11), and is a martingale
measure (as the discounted asset prices are P ∗-martingales, by above), i.e.
P ∗ (or Q) is the equivalent martingale measure (EMM).
2. Fundamental Theorem of Asset Pricing. The above continuous-time re-
sult may be summarised just as the Fundamental Theorem of Asset Pricing
in discrete time: to get the no-arbitrage price of a contingent claim, take
the discounted expected value under the equivalent mg – or risk-neutral –
measure.
3. Completeness. In discrete time, we saw that absence of arbitrage corre-
sponded to existence of risk-neutral measures, completeness to uniqueness.
We have obtained existence and uniqueness here (and so completeness), by
appealing to existence and uniqueness theorems for PDEs (which we have not
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proved!). A more probabilistic route is to use Girsanov’s Theorem (Week 11)
instead. Completeness questions then become questions on representation
theorems for Brownian martingales (Week 11). As usual, there is a choice of
routes to the major results – in this case, a trade-off between analysis (PDEs)
and probability (Girsanov’s Theorem and the Representation Theorem for
Brownian Martingales, Week 11).
4. Calculation. When solutions have to be found numerically (as is the case
in general - though not for some important special cases such as European
call options, considered below), we again have a choice of
(i) analytic methods: numerical solution of a PDE,
(ii) probabilistic methods: evaluation, by the Risk-Neutral Valuation For-
mula, of an expectation.
A comparison of convenience between these two methods depends on one’s
experience of numerical computation and the software available. However, in
the simplest case considered here, the probabilistic problem involves a one-
dimensional integral, while the analytic problem is two-dimensional (involves
a two-variable PDE: one variable would give an ODE!). So on dimensional
grounds, and because of the probabilistic content of this course, we will gen-
erally prefer the probabilistic approach.
5. The Feynman-Kac formula. It is interesting to note that the Feynman-
Kac formula originates in an entirely different context, namely quantum
physics. In the late 1940s, the physicist Richard Feynman developed his
path-integral approach to quantum mechanics, leading to his work (with
Schwinger, Tomonaga and Dyson) on QED (quantum electrodynamics). Feyn-
man’s approach was non-rigorous; Mark Kac, an analyst and probabilist with
an excellent background in PDE, produced a rigorous version which led to
the approach above.
6. The Sharpe ratio. There is no point in investing in a risky asset with
mean return rate µ, when cash is a riskless asset with return rate r, unless
µ > r. The excess return µ − r is compared with the risk, as measured by
the volatility σ via the Sharpe ratio

λ := (µ− r)/σ,

also known as the market price of risk.
Now the process specified under P ∗ by the dynamics (∗∗) is our old friend

geometric Brownian motion, GBM(r, σ). Thus if St has P
∗-dynamics

dSt = rStdt+ σStdWt, St = s,
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with W a P ∗-Brownian motion, then we can write ST explicitly as

ST = s exp{(r − 1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)

∫ ∞

−∞
h(s exp{(r − 1

2
σ2)(T − t) + σ(T − t)

1
2x}).e

− 1
2
x2

√
2π

dx.

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

h(s) = (s−K)+.

Then

F (t, x) = e−r(T−t)

∫ ∞

−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t)+σ(T − t)

1
2x}−K]+dx.

We have already evaluated integrals of this type in Chapter IV, where we
obtained the Black-Scholes formula from the binomial model by a passage to
the limit. Completing the square in the exponential as before gives the

Continuous Black-Scholes Formula.

F (t, s) = sΦ(d+)− e−r(T−t)KΦ(d−),

where (writing Φ for the standard normal distribution function)

d± := [log(s/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t.

Note.
1 Delta. Writing Π as before for the option price, S for the asset price, the
partial derivative of Π w.r.t. S is called the delta of the option:

∆ := ∂Π/∂S.
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The Black-Scholes analysis above works by balancing a holding of option
against stock so as to make the portfolio instantaneously riskless; the method
is known as delta-hedging. Note that the portfolio, being only instantaneously
riskless, can only be kept so by continuous re-balancing. This involves infinite
amounts of trading, an admitted idealisation. In particular, delta-hedging is
vulnerable to transaction costs, present in real markets, and in more realistic
– but more complicated – models; see §6.3 below.
2 The Greeks. Other important characteristics, traditionally labelled by
Greek letters as above, are:
(i) gamma: Γ := ∂2Π/∂S2 (the ‘curvature’),
(ii) theta: Θ := ∂Π/∂t;
(iii) rho: ρ := ∂Π/∂r;
(iv) vega, the partial derivative w.r.t. volatility σ: ∂Π/∂σ.

As in Problems 7: vega > 0 (‘options like volatility’); delta for calls and
puts satisfies ∆C ∈ (0, 1) (delta goes up with the price, but less steeply than
the price, so call options are worthwhile as hedges against price increases);
∆P ∈ (−1, 0) (delta goes down with the price, but less steeply than the price,
so put options are worthwhile as hedges against price decreases).
3. To put the basic case (µ and σ constant) in a nutshell:
(i). Dynamics are given by GBM , dSt = µSdt+ σSdWt.
(ii). Discount: dS̃y = (µ− r)S̃dt+ σS̃dWt.
(iii). Use Girsanov’s Theorem (Week 11) to change µ to r: under P ∗,
dS̃t = σS̃dWt.
(iv). Integrate: the RHS gives a P ∗-martingale, so has constantE∗-expectation.
4. One often has a choice between discrete and continuous time. For discrete
time, we have proved everything; for continuous time, we have had to quote
the hard proofs. Note that in continuous time we can use calculus – PDEs,
SDEs etc. In discrete time we use instead the calculus of finite differences.
5. The calculus of finite differences is very similar to ordinary calculus (old-
fashioned name: the infinitesimal calculus – thus the opposite of finite here
is infinitesimal, not infinite!). It is in some ways harder. For instance: you
all know integration by parts (partial integration) backwards. The discrete
analogue – partial summation, or Abel’s lemma – may be less familiar.

The calculus of finite differences used to be taught for use in e.g. inter-
polation (how to use information in mathematical tables to ‘fill in missing
values’). This is now done by computer subroutines – but, computers work
discretely (with differences rather than derivatives), so the subject is still
alive and well.
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