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Chapter II. PROBABILITY BACKGROUND.

1. Measure
The language of option pricing involves that of probability, which in turn

involves that of measure theory. This originated with Henri LEBESGUE
(1875-1941), in his 1902 thesis, ‘Intégrale, longueur, aire’. We begin with
the simplest case.
Length. The length µ(I) of an interval I = (a, b), [a, b], [a, b) or (a, b] should
be b − a: µ(I) = b − a. The length of the disjoint union I =

∪n
r=1 Ir of

intervals Ir should be the sum of their lengths:

µ

(
n∪

r=1

Ir

)
=

n∑
r=1

µ(Ir) (finite additivity).

Consider now an infinite sequence I1, I2, . . .(ad infinitum) of disjoint intervals.
Letting n → ∞ suggests that length should again be additive over disjoint
intervals:

µ

(
∞∪
r=1

Ir

)
=

∞∑
r=1

µ(Ir) (countable additivity).

For I an interval, A a subset of length µ(A), the length of the complement
I \ A := I ∩ Ac of A in I should be

µ(I \ A) = µ(I)− µ(A) (complementation).

If A ⊆ B and B has length µ(B) = 0, then A should have length 0 also:

A ⊆ B & µ(B) = 0 ⇒ µ(A) = 0 (completeness).

Let F be the smallest class of sets A ⊂ R containing the intervals, closed
under countable disjoint unions and complements, and complete (containing
all subsets of sets of length 0 as sets of length 0). The above suggests – what
Lebesgue showed – that length can be sensibly defined on the sets F on the
line, but on no others. There are others – but they are hard to construct (in
technical language: the Axiom of Choice, or some variant of it such as Zorn’s
Lemma, is needed to demonstrate the existence of non-measurable sets – but
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all such proofs are highly non-constructive). So: some but not all subsets of
the line have a length. These are called the Lebesgue-measurable sets, and
form the class F described above; length, defined on F is called Lebesgue
measure µ (on the real line, R).
Area. The area of a rectangle R = (a1, b1)× (a2, b2) – with or without any of
its perimeter included – should be µ(R) = (b1 − a1)× (b2 − a2). The area of
a finite or countably infinite union of disjoint rectangles should be the sum
of their areas:

µ

(
∞∪
n=1

Rn

)
=

∞∑
n=1

µ(Rn) (countable additivity).

If R is a rectangle and A ⊆ R with area µ(A), the area of the complement
R \ A should be

µ(R \ A) = µ(R)− µ(A) (complementation).

If B ⊆ A and A has area 0, B should have area 0:

A ⊆ B & µ(B) = 0 ⇒ µ(A) = 0 (completeness).

Let F be the smallest class of sets, containing the rectangles, closed under
finite or countably infinite unions, closed under complements, and complete
(containing all subsets of sets of area 0 as sets of area 0). Lebesgue showed
that area can be sensibly defined on the sets in F and no others. The sets
A ∈ F are called the Lebesgue-measurable sets in the plane R2; area, defined
on F , is called Lebesgue measure in the plane. So: some but not all sets in
the plane have an area.
Volume. Similarly in three-dimensional space R3, starting with the volume
of a cuboid C = (a1, b1)× (a2, b2)× (a3, b3) as

µ(C) = (b1 − a1) · (b2 − a2) · (b3 − a3).

Euclidean space. Similarly in k-dimensional Euclidean space Rk. We start
with

µ

(
k∏

i=1

(ai, bi

)
=

k∏
i=1

(bi − ai),

and obtain the class F of Lebesgue-measurable sets in Rk, and Lebesgue mea-
sure µ in Rk.
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Probability.
The unit cube [0, 1]k in Rk has Lebesgue measure 1. It can be used to

model the uniform distribution (density f(x) = 1 if x ∈ [0, 1]k, 0 otherwise),
with probability = length/area/volume if k = 1/2/3.
Note. If a property holds everywhere except on a set of measure zero, we
say it holds almost everywhere (a.e.) [French: presque partout, p.p.; German:
fast überall, f.u.]. If it holds everywhere except on a set of probability zero,
we say it holds almost surely (a.s.) [or, with probability one].

2 Integral.
1. Indicators. We start in dimension k = 1 for simplicity , and consider the
simplest calculus formula

∫ b

a
1 dx = b− a. We rewrite this as

I(f) :=

∫ ∞

−∞
f(x) dx = b− a if f(x) = I[a,b)(x),

the indicator function of [a, b] (1 in [a, b], 0 outside it), and similarly for the
other three choices about end-points.
2. Simple functions. A function f is called simple if it is a finite linear combi-
nation of indicators: f =

∑n
i=1 cifi for constants ci and indicator functions fi

of intervals Ii. One then extends the definition of the integral from indicator
functions to simple functions by linearity:

I

(
n∑

i=1

cifi

)
:=

n∑
i=1

ciI(fi)

for constants ci and indicators fi of intervals Ii.
3. Non-negative measurable functions. Call f a (Lebesgue-) measurable func-
tion if, for all c, the sets {x : f(x) ≤ c} is a Lebesgue-measurable set (§1).
If f is a non-negative measurable function, we quote that it is possible to
construct f as the increasing limit of a sequence of simple functions fn:

fn(x) ↑ f(x) for all x ∈ R (n → ∞), fn simple.

We then define the integral of f as

I(f) := lim
n→∞

I(fn) (≤ ∞)

(we quote that this does indeed define I(f): the value does not depend on
which approximating sequence (fn) we use). Since fn increases in n, so does

3



I(fn) (the integral is order-preserving), so either I(fn) increases to a finite
limit, or diverges to ∞. In the first case, we say f is (Lebesgue-) integrable
with (Lebesgue-) integral I(f) = lim I(fn), or

∫
f(x) dx = lim

∫
fn(x) dx, or

simply
∫
f = lim

∫
fn.

4. Measurable functions. If f is a measurable function that may change sign,
we split it into its positive and negative parts, f±:

f+(x) := max(f(x), 0), f−(x) := −min(f(x), 0),
f(x) = f+(x)− f−(x), |f(x)| = f+(x) + f−(x)

If both f+ and f− are integrable, we say that f is too, and define∫
f :=

∫
f+ −

∫
f−.

Then, in particular, |f | is also integrable, and∫
|f | =

∫
f+ +

∫
f−.

Note. The Lebesgue integral thus defined is, by construction, an absolute
integral: f is integrable iff |f | is integrable. Thus, for instance, the well-
known formula ∫ ∞

0

sin x

x
dx =

π

2

has no meaning for Lebesgue integrals, since
∫∞
1

| sinx|
x

dx diverges to +∞
like

∫∞
1

1
x
dx. It has to be replaced by the limit relation∫ X

0

sinx

x
dx → π

2
(X → ∞).

The class of (Lebesgue-) integrable functions f on R is written L(R) or (for
reasons explained below) L1(R) – abbreviated to L1 or L.
Higher dimensions. In Rk, we start instead from the k-dimensional boxes in
place of intervals. If f is the indicator of a box B = [a1, b1]× [a2, b2]× · · · ×
[ak, bk], ∫

f :=
k∏

i=1

(bi − ai).

We then extend to simple functions (linear combinations of indicators of
boxes) by linearity, to non-negative measurable functions by taking increasing
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limits, and to measurable functions by splitting into positive and negative
parts.
Lp spaces. For p ≥ 1, the Lp spaces Lp(Rk) on Rk are the spaces of measurable
functions f with Lp-norm

∥f∥p :=
(∫

|f |p
) 1

p

< ∞.

Riemann integrals. Our first exposure to integration is the ‘Sixth-Form in-
tegral’, taught non-rigorously at school. Mathematics undergraduates are
taught a rigorous integral (in their first or second years), the Riemann inte-
gral [G.B. RIEMANN (1826-1866)] – essentially this is just a rigourization of
the school integral. It is much easier to set up than the Lebesgue integral,
but much harder to manipulate.

For finite intervals [a, b] ,we quote:
(i) for any function f Riemann-integrable on [a, b], it is Lebesgue-integrable
to the same value (but many more functions are Lebesgue integrable),
(ii) f is Riemann-integrable on [a, b] iff it is continuous a.e. on [a, b]. Thus the
question, “Which functions are Riemann-integrable?” cannot be answered
without the language of measure theory – which then gives one the techni-
cally superior Lebesgue integral anyway.
Note. Integration is like summation (which is why Leibniz gave us the in-
tegral sign

∫
, as an elongated S). Lebesgue was a very practical man – his

father was a tradesman – and used to think about integration in the follow-
ing way. Think of a shopkeeper totalling up his day’s takings. The Riemann
integral is like adding up the takings – notes and coins – in the order in
which they arrived. By contrast, the Lebesgue integral is like totalling up
the takings in order of size - from the smallest coins up to the largest notes.
This is obviously better! In mathematical effect, it exchanges ‘integrating by
x-values’ (abscissae) with ‘integrating by y-values (ordinates).

Lebesgue-Stieltjes integral.
Suppose that F (x) is a non-decreasing function on R:

F (x) ≤ F (x) if x ≤ y

(prime example: F a probability distribution function). Such functions can
have at most countably many discontinuities, which are at worst jumps. We
may without loss re-define F at jumps so as to be right-continuous.
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We now generalise the starting points above:
(i) Measure. We take µ((a, b]) := F (b)− F (a).

(ii) Integral. We take
∫ b

a
1 := F (b)− F (a).

We may now follow through the successive extension procedures used above.
We obtain:
(i) Lebesgue-Stieltjes measure µ, or µF ,
(ii) Lebesgue-Stieltjes integral

∫
f dµ, or

∫
f dµF , or even

∫
f dF .

Similarly in higher dimensions; we omit further details.
Finite variation. If instead of being monotone non-decreasing, F is the
difference of two such functions, F = F1 − F2, we can define the integrals∫
f dF1,

∫
f dF2 as above, and then define∫

f dF =

∫
f d(F1 − F2) :=

∫
f dF1 −

∫
f dF2.

If [a, b] is a finite interval and F is defined on [a, b], a finite collection of
points, x0, x1, . . . , xn with a = x0 < x1 < · · · < xn = b, is called a partition of
[a, b], P say. The sum

∑n
i=1 |F (xi −F(xi−1)| is called the variation of F over

the partition. The least upper bound of this over all partitions P is called
the variation of F over the interval [a, b], V b

a (F ):

V b
a (F ) := sup

P

∑
|F (xi)− F (xi−1)|.

This may be +∞; but if V b
a (F ) < ∞, F is said to be of finite variation

on [a, b], F ∈ FV b
a (bounded variation, BV, is also used). If F is of finite

variation on all finite intervals, F is said to be locally of finite variation,
F ∈ FVloc; if F is of finite variation on the real line, F is of finite variation,
F ∈ FV .

We quote (Jordan’s theorem) that the following are equivalent:
(i) F is locally of finite variation,
(ii) F can be written as the difference F = F1 − F2 of two monotone func-
tions.
So the above procedure defines the integral

∫
f dF when the integrator F is

of finite variation.

3 Probability.

Probability spaces.
The mathematical theory of probability can be traced to 1654, to corre-
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spondence between PASCAL (1623-1662) and FERMAT (1601-1665). How-
ever, the theory remained both incomplete and non-rigorous till the 20th
century. It turns out that the Lebesgue theory of measure and integral
sketched above is exactly the machinery needed to construct a rigorous the-
ory of probability adequate for modelling reality (option pricing, etc.) for
us. This was realised by the great Russian mathematician and probabilist
A.N.KOLMOGOROV (1903-1987), whose classic book of 1933, Grundbegriffe
der Wahrscheinlichkeitsrechnung [Foundations of probability theory] inaugu-
rated the modern era in probability.

Recall from your first course on probability that, to describe a random
experiment mathematically, we begin with the sample space Ω, the set of all
possible outcomes. Each point ω of Ω, or sample point, represents a possible
– random – outcome of performing the random experiment. For a set A ⊆ Ω
of points ω we want to know the probability P (A) (or Pr(A), pr(A)). We
clearly want
1. P (∅) = 0, P (Ω) = 1,
2. P (A) ≥ 0 for all A,
3. If A1, A2, . . . , An are disjoint, P (

∪n
i=1 Ai) =

∑n
i=1 P (Ai) (finite additiv-

ity), which, as above we will strengthen to
3*. If A1, A2 . . . (ad inf.) are disjoint,

P (
∞∪
i=1

Ai) =
∞∑
i=1

P (Ai) (countable additivity).

4. If B ⊆ A and P (A) = 0, then P (B) = 0 (completeness).
Then by 1 and 3 (with A = A1, Ω \ A = A2),

P (Ac) = P (Ω \ A) = 1− P (A).

So the class F of subsets of Ω whose probabilities P (A) are defined should
be closed under countable, disjoint unions and complements, and contain the
empty set ∅ and the whole space Ω. Such a class is called a σ-field of subsets
of Ω [or sometimes a σ-algebra, which one would write A]. For each A ∈ F ,
P (A) should be defined (and satisfy 1, 2, 3∗, 4 above). So, P : F → [0, 1] is a
set-function,

P : A 7→ P (A) ∈ [0, 1] (A ∈ F).

The sets A ∈ F are called events. Finally, 4 says that all subsets of null-sets
(events) with probability zero (we will call the empty set ∅ empty, not null)
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should be null-sets (completeness). A probability space, or Kolmogorov triple,
is a triple (Ω,F , P ) satisfying these Kolmogorov axioms 1,2,3*,4 above. A
probability space is a mathematical model of a random experiment.
Random variables.

Next, recall random variables X from your first probability course. Given
a random outcome ω, you can calculate the value X(ω) of X (a scalar – a
real number, say; similarly for vector-valued random variables, or random
vectors). So, X is a function from Ω to R, X → R,

X : ω → X(ω) (ω ∈ Ω).

Recall also that the distribution function of X is defined by

F (x), or FX(x), := P
(
{ω : X(ω) ≤ x}

)
, or P (X ≤ x), (x ∈ R).

We can only deal with functions X for which all these probabilities are de-
fined. So, for each x, we need {ω : X(ω) ≤ x} ∈ F . We summarize this by
saying that X is measurable with respect to the σ-field F (of events), briefly,
X is F -measurable. Then, X is called a random variable [non-F -measurable
X cannot be handled, and so are left out]. So,
(i) a random variable X is an F -measurable function on Ω,
(ii) a function on Ω is a random variable (is measurable) iff its distribution
function is defined.

Generated σ-fields.
The smallest σ-field containing all the sets {ω : X(ω) ≤ x} for all real x

[equivalently, {X < x}, {X ≥ x}, {X > X}] is called the σ-field generated
by X, written σ(X). Thus,

X is F -measurable [is a random variable] iff σ(X) ⊆ F .

When the (random) value X(ω) is known, we know which of the events in the
σ-field generated by X have happened: these are the events {ω : X(ω) ∈ B},
where B runs through the Borel σ-field [the σ-field generated by the intervals]
on the line.
Interpretation. Think of σ(X) as representing what we know when we know
X, or in other words the information contained in X (or in knowledge of
X). This is reflected in the following result, due to J. L. DOOB (1910-2004),
which we quote:

σ(X) ⊆ σ(Y ) iff X = g(Y )

8



for some measurable function g. For, knowing Y means we know X := g(Y )
– but not vice-versa, unless the function g is one-to-one [injective], when the
inverse function g−1 exists, and we can go back via Y = g−1(X).

Expectation.
A measure (II.1) determines an integral (II.2). A probability measure P ,

being a special kind of measure [a measure of total mass one] determines a
special kind of integral, called an expectation.
Definition. The expectation E of a random variable X on (Ω,F , P ) is
defined by

EX :=

∫
Ω

X dP, or

∫
Ω

X(ω) dP (ω).

If X is real-valued, say, with distribution function F , recall that EX is
defined in your first course on probability by

EX :=

∫
xf(x) dx if X has a density f

or if X is discrete, taking values Xn, (n = 1, 2, . . .) with probability function
f(xn)(≥ 0), (

∑
xnf(xn) = 1),

EX :=
∑

xnf(xn).

These two formulae are the special cases (for the density and discrete cases)
of the general formula

EX :=

∫ ∞

−∞
x dF (x)

where the integral on the right is a Lebesgue-Stieltjes integral. This in turn
agrees with the definition above, since if F is the distribution function of X,∫

Ω

X dP =

∫ ∞

−∞
x dF (x)

follows by the change of variable formula for the measure-theoretic integral,
on applying the map X : Ω → R (we quote this: see any book on measure
theory).
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Glossary. We now have two parallel languages, measure-theoretic and prob-
abilistic:

Measure Probability
Integral Expectation
Measurable set Event
Measurable function Random variable
almost-everywhere (a.e.) almost-surely (a.s.)

§4. Equivalent Measures and Radon-Nikodym derivatives.
Given two measures P and Q defined on the same σ-field F , we say that

P is absolutely continuous with respect to Q, written

P << Q,

if P (A) = 0 whenever Q(A) = 0, A ∈ F . We quote from measure theory the
vitally important Radon-Nikodym theorem: P << Q iff there exists a (F -)
measurable function f such that

P (A) =

∫
A

f dQ ∀A ∈ F

(note that since the integral of anything over a null set is zero, any P so
representable is certainly absolutely continuous with respect to Q – the point
is that the converse holds). Since P (A) =

∫
A
dP , this says that

∫
A
dP =∫

A
f dQ for all A ∈ F . By analogy with the chain rule of ordinary calculus,

we write dP/dQ for f ; then∫
A

dP =

∫
A

dP

dQ
dQ ∀A ∈ F .

Symbolically,

if P ≪ Q, dP =
dP

dQ
dQ.

The measurable function [random variable] dP/dQ is called the Radon-Nikodym
derivative [RN-derivative] of P with respect to Q.

If P << Q and also Q << P , we call P and Q equivalent measures,
written P ∼ Q. Then dP/dQ and dQ/dP both exist, and

dP

dQ
= 1
/dQ

dP
.
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For P ∼ Q, P (A) = 0 iff Q(A) = 0: P and Q have the same null sets. Taking
negations: P ∼ Q iff P,Q have the same sets of positive measure. Taking
complements: P ∼ Q iff P,Q have the same sets of probability one [the same
a.s. sets]. Thus the following are equivalent: P ∼ Q iff P , Q have the same
null sets/the same a.s. sets/the same sets of positive measure.
Note. Far from being an abstract theoretical result, the Radon-Nikodym
theorem is of key practical importance, in two ways:
(a) It is the key to the concept of conditioning (§5, §6 below), which is of
central importance throughout,
(b) The concept of equivalent measures is central to the key idea of math-
ematical finance, risk-neutrality, and hence to its main results, the Black-
Scholes formula, the Fundamental Theorem of Asset Pricing (FTAP), etc.
The key to all this is that prices should be the discounted expected values
under the equivalent martingale measure. Thus equivalent measures, and
the operation of change of measure, are of central economic and financial
importance. We shall return to this later in connection with the main math-
ematical result on change of measure, Girsanov’s theorem (VI.4).

Recall that we first met the phrase ‘equivalent martingale measure’ in I.5
above. We now know what a measure is, and what equivalent measures are;
we will learn about martingales in III.3 below.

§5.Conditional Expectations.
Suppose that X is a random variable, whose expectation exists (i.e.

E|X| < ∞, or X ∈ L1). Then EX, the expectation of X, is a scalar (a
number) – non-random. The expectation operator E averages out all the
randomness in X, to give its mean (a weighted average of the possible value
of X, weighted according to their probability, in the discrete case).

It often happens that we have partial information about X – for instance,
we may know the value of a random variable Y which is associated with X,
i.e. carries information about X. We may want to average out over the
remaining randomness. This is an expectation conditional on our partial in-
formation, or more briefly a conditional expectation.

This idea will be familiar already from elementary courses, in two cases
(see e.g. [BF]):
1. Discrete case, based on the formula

P (A|B) := P (A ∩B)/P (B) if P (B) > 0.

If X takes values x1, · · · , xm with probabilities f1(xi) > 0, Y takes values
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y1, · · · , yn with probabilities f2(yj) > 0, (X, Y ) takes values (xi, yj) with
probabilities f(xi, yj) > 0, then
(i) f1(xi) =

∑
j f(xi, yj), f2(yj) =

∑
i f(xi, yj),

(ii) P (Y = yj|X = xi) = P (X = xi, Y = yj)/P (X = xi) = f(xi, yj)/f1(xi)

= f(xi, yj)/
∑
j

f(xi, yj).

This is the conditional distribution of Y given X = xi, written

fY |X(yj|xi) = f(xi, yj)/f1(xi) = f(xi, yj)/
∑
j

f(xi, yj).

Its expectation is

E(Y |X = xi) =
∑
j

yjfY |X(yj|xi)

=
∑
j

yjf(xi, yj)/
∑
j

f(xi, yj).

But this approach only works when the events on which we condition have
positive probability, which only happens in the discrete case.
2. Density case. If (X,Y ) has density f(x, y),

X has density f1(x) :=

∫ ∞

−∞
f(x, y)dy, Y has density f2(y) :=

∫ ∞

−∞
f(x, y)dx.

We define the conditional density of Y given X = x by the continuous ana-
logue of the discrete formula above:

fY |X(y|x) := f(x, y)/f1(x) = f(x, y)/

∫ ∞

−∞
f(x, y)dy.

Its expectation is

E(Y |X = x) =

∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞
yf(x, y)dy/

∫ ∞

−∞
f(x, y)dy.

Example: Bivariate normal distribution, N(µ1, µ2, σ
2
1, σ

2
2, ρ).

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1),

the familiar regression line of statistics (linear model).
The problem here is that joint densities need not exist –
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