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The OST is important in many areas, such as sequential analysis in
statistics. We turn in the next section to related ideas specific to the gam-
bling/financial context.

Write XT
n := Xn∧T for the sequence (Xn) stopped at time T .

Proposition. (i) If (Xn) is adapted and T is a stopping-time, the stopped
sequence (Xn∧T ) is adapted.
(ii) If (Xn) is a martingale [supermartingale] and T is a stopping time, (XT

n )
is a martingale [supermartingale].

Proof. If ϕj := I{j ≤ T},

XT∧n = X0 +
n∑
1

ϕj(Xj −Xj−1).

Since {j ≤ T} is the complement of {T < j} = {T ≤ j − 1} ∈ Fj−1,
ϕj = I{j ≤ T} ∈ Fj−1, so (ϕn) is previsible. So (XT

n ) is adapted.
If (Xn) is a martingale, so is (XT

n ) as it is the martingale transform of
(Xn) by (ϕn). Since by previsibility of (ϕn)

E[XT∧n|Fn−1] = X0 +
n−1∑
1

ϕj(Xj −Xj−1) + ϕn(E[Xn|Fn−1]−Xn−1),

i.e.
E[XT∧n|Fn−1]−XT∧n = ϕn(E[Xn|Fn−1]−Xn−1),

ϕn ≥ 0 shows that if (Xn) is a supermg [submg], so is (XT∧n). //

§7. The Snell Envelope and Optimal Stopping.

Definition. If Z = (Zn)
N
n=0 is a sequence adapted to a filtration (Fn), the

sequence U = (Un)
N
n=0 defined by{

UN := ZN ,
Un := max(Zn, E(Un+1|Fn)) (n ≤ N − 1)

is called the Snell envelope of Z (J. L. Snell in 1952; [N] Ch. 6). U is adapted,
i.e. Un ∈ Fn for all n. For, Z is adapted, so Zn ∈ Fn. Also E[Un+1|Fn] ∈ Fn
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(definition of conditional expectation). Combining, Un ∈ Fn, as required.
We shall see in Ch. IV that the Snell envelope is exactly the tool needed

in pricing American options. It is the least supermg majorant:

Theorem. The Snell envelope (Un) of (Zn) is a supermartingale, and is the
smallest supermartingale dominating (Zn) (that is, with Un ≥ Zn for all n).

Proof. First, Un ≥ E(Un+1|Fn), so U is a supermartingale, and Un ≥ Zn, so
U dominates Z.

Next, let T = (Tn) be any other supermartingale dominating Z; we must
show T dominates U also. First, since UN = ZN and T dominates Z, TN ≥
UN . Assume inductively that Tn ≥ Un. Then

Tn−1 ≥ E(Tn|Fn−1) (as T is a supermartingale)

≥ E(Un|Fn−1) (by the induction hypothesis)

and
Tn−1 ≥ Zn−1 (as T dominates Z).

Combining,
Tn−1 ≥ max(Zn−1, E(Un|Fn−1)) = Un−1.

By backward induction, Tn ≥ Un for all n, as required. //

Note. It is no accident that we are using induction here backwards in time.
We will use the same method – also known as dynamic programming (DP) –
in Ch. IV below when we come to pricing American options.

Proposition. T0 := min{n ≥ 0 : Un = Zn} is a stopping time, and the
stopped sequence (UT0

n ) is a martingale.

Proof (not examinable). Since UN = ZN , T0 ∈ {0, 1, · · · , N} is well-defined
(and we can use minimum rather than infimum). For k = 0, {T0 = 0} =
{U0 = Z0} ∈ F0; for k ≥ 1,

{T0 = k} = {U0 > Z0} ∩ · · · ∩ {Uk−1 > Zk−1} ∩ {Uk = Zk} ∈ Fk.

So T0 is a stopping-time.
As in the proof of the Proposition in §6,

UT0
n = Un∧T0 = Uo +

n∑
1

ϕj∆Uj,
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where ϕj = I{T0 ≥ j} is adapted. For n ≤ N − 1,

UT0
n+1 − UT0

n = ϕn+1(Un+1 − Un) = I{n+ 1 ≤ T0}(Un+1 − Un).

Now Un := max(Zn, E(Un+1|Fn)), and

Un > Zn on {n+ 1 ≤ T0}.

So from the definition of Un,

Un = E(Un+1|Fn) on {n+ 1 ≤ T0}.

We next prove

UT0
n+1 − UT0

n = I{n+ 1 ≤ T0}(Un+1 − E(Un+1|Fn)). (1)

For, suppose first that T0 ≥ n+1. Then the left of (1) is Un+1−Un, the right
is Un+1 −E(Un+1|Fn), and these agree on {n+1 ≤ T0} by above. The other
possibility is that T0 < n+1, i.e. T0 ≤ n. Then the left of (1) is UT0−UT0 = 0,
while the right is zero because the indicator is zero. Combining, this proves
(1) as required. Apply E(.|Fn) to (1): since {n+1 ≤ T0} = {T0 ≤ n}c ∈ Fn,

E[(UT0
n+1 − UT0

n )|Fn] = I{n+ 1 ≤ T0}E([Un+1 − E(Un+1|Fn)]|Fn)

= I{n+ 1 ≤ T0)}[E(Un+1|Fn)− E(Un+1|Fn)] = 0.

So E(UT0
n+1|Fn) = UT0

n . This says that UT0
n is a martingale, as required. //

Note. Just because U is a supermartingale, we knew that stopping it would
give a supermartingale, by the Proposition of §6. The point is that, using
the special properties of the Snell envelope, we actually get a martingale.

Write Tn,N for the set of stopping times taking values in {n, n+1, · · · , N}
(a finite set, as Ω is finite). We next see that the Snell envelope solves the
optimal stopping problem: it maximises the expectation of our final value of
Z – the value when we choose to quit – conditional on our present informa-
tion.

Theorem. T0 solves the optimal stopping problem for Z:

U0 = E(ZT0 |F0) = max{E(ZT |F0) : T ∈ T0,N}.
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Proof. As (UT0
n ) is a martingale (above),

U0 = UT0
0 (since 0 = 0 ∧ T0)

= E(UT0
N |F0) (by the martingale property)

= E(UT0 |F0) (since T0 = T0 ∧N)

= E(ZT0 |F0) (since UT0 = ZT0),

proving the first statement. Now for any stopping time T ∈ T0,N , since U is
a supermartingale (above), so is the stopped process (UT

n ) (§6). So

U0 = UT
0 (0 = 0 ∧ T , as above)

≥ E(UT
N |F0) ((UT

n ) a supermartingale)

= E(UT |F0) (T = T ∧N)

≥ E(ZT |F0) ((Un) dominates (Zn)),

and this completes the proof. //

The same argument, starting at time n rather than time 0, gives an ap-
parently more general version:

Theorem. If Tn := min{j ≥ n : Uj = Zj},

Un = E(ZTn|Fn) = sup{E(ZT |Fn) : T ∈ Tn,N}.

To recapitulate: as we are attempting to maximise our payoff by stopping
Z = (Zn) at the most advantageous time, the Theorem shows that Tn gives
the best stopping-time that is realistic: it maximises our expected payoff given
only information currently available (it is easy, but irrelevant, to maximise
things with hindsight!). We thus call T0 (or Tn, starting from time n) the
optimal stopping time for the problem.

§8. Doob Decomposition.

Theorem. Let X = (Xn) be an adapted process with each Xn ∈ L1. Then
X has an (essentially unique) Doob decomposition

X = X0 +M + A : Xn = X0 +Mn + An ∀n (D)

with M a martingale null at zero, A a previsible process null at zero. If also
X is a submartingale (‘increasing on average’), A is increasing: An ≤ An+1
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for all n, a.s.

Proof. If X has a Doob decomposition (D),

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An − An−1|Fn−1].

The first term on the right is zero, as M is a martingale. The second is
An − An−1, since An (and An−1) is Fn−1-measurable by previsibility. So

E[Xn −Xn−1|Fn−1] = An − An−1, (1)

and summation gives

An =
n∑
1

E[Xk −Xk−1|Fk−1], a.s.

We use this formula to define (An), clearly previsible. We then use (D) to
define (Mn), then a martingale, giving the Doob decomposition (D).

If X is a submartingale, the LHS of (1) is ≥ 0, so the RHS of (1) is ≥ 0,
i.e. (An) is increasing. //

Note. 1. Although the Doob decomposition is a simple result in discrete
time, the analogue in continuous time is deep (see Ch. V). This illustrates
the contrasts that may arise between the theories of stochastic processes in
discrete and continuous time.
2. Previsible processes are ‘easy’ (trading is easy if you can foresee price
movements!). So the Doob Decomposition splits any (adapted) process X
into two bits, the ‘easy’ (previsible) bit A and the ‘hard’ (martingale) bit M .
Moral: martingales are everywhere!
3. Submartingales model favourable games, so are increasing on average. It
‘ought’ to be possible to split such a process into an increasing bit, and a
remaining ‘trendless’ bit. It is – the trendless bit is the martingale.
4. This situation resembles that in Statistics, specifically Regression (see e.g.
[BF]), where one has a decomposition

Data = Signal + noise = fitted value + residual.
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§9. Examples.
1. Simple random walk.

Recall the simple random walk: Sn :=
∑n

1 Xk, where the Xn are inde-
pendent tosses of a fair coin, taking values ±1 with equal probability 1/2.
Suppose we decide to bet until our net gain is first +1, then quit. Let T be
the time we quit; T is a stopping time.

The stopping-time T has been analysed in detail; see e.g.
[GS] GRIMMETT, G. R. & STIRZAKER, D.: Probability and random pro-
cesses, OUP, 3rd ed., 2001 [2nd ed. 1992, 1st ed. 1982], §5.2.
From this, note:
(i) T < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) ET = +∞: the mean waiting-time till this happens is infinity. So:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet till you get ahead (which happens eventually, by (i)), then quit.
However, as a gambling strategy, this is hopelessly impractical: because of
(ii), you need unlimited time, and because of (iii), you need unlimited capital
– neither of which is realistic.

Notice that the Optional Stopping Theorem fails here: we start at zero,
so S0 = 0, ES0 = 0; but ST = 1, so EST = 1. This shows two things:
(a) The Optional Stopping Theorem does indeed need conditions, as the con-
clusion may fail otherwise [none of the conditions (i) - (iii) in the OST are
satisfied in the example above],
(b) Any practical gambling (or trading) strategy needs to have some inte-
grability or boundedness restrictions to eliminate such theoretically possible
but practically ridiculous cases.
2. The doubling strategy.

The strategy of doubling when losing – the martingale, according to the
Oxford English Dictionary (§3) has similar properties – and would be suicidal
in practice as a result.
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Chapter IV. MATHEMATICAL FINANCE IN DISCRETE TIME.

We follow [BK], Ch. 4.

§1. The Model.
It suffices, to illustrate the ideas, to work with a finite probability space

(Ω,F , P ), with a finite number |Ω| of points ω, each with positive probabil-
ity: P ({ω}) > 0. We will use a finite time-horizon N , which will correspond
to the expiry date of the options.

As before, we use a filtration F0 ⊂ F1 ⊂ · · · ⊂ FN : we may (and shall)
take F0 = {∅,Ω}, the trivial σ-field, FN = F = P(Ω) (here P(Ω) is the
power-set of Ω, the class of all 2|Ω| subsets of Ω: we need every possible sub-
set, as they all (apart from the empty set) carry positive probability.

The financial market contains d+1 financial assets: a riskless asset (bank
account) labelled 0, and d risky assets (stocks, say) labelled 1 to d. The prices
of the assets at time n are random variables, S0

n, S
1
n, · · · , Sd

n say [note that
we use superscripts here as labels, not powers, and suppress ω for brevity],
non-negative and Fn-measurable [at time n, we know the prices Si

n].
We take S0

0 = 1 (that is, we reckon in units of our initial bank holding).
We assume for convenience a constant interest rate r > 0 in the bank, so 1
unit in the bank at time 0 grows to (1 + r)n at time n. So 1/(1 + r)n is the
discount factor at time n.

Definition. A trading strategyH is a vector stochastic processH = (Hn)
N
n=0 =

((H0
n, H

1
n, · · · , Hd

n))
N
n=0 which is predictable (or previsible): each H i

n is Fn−1-
measurable for n ≥ 1.

Here H i
n denotes the number of shares of asset i held in the portfolio at

time n – to be determined on the basis of information available before time
n; the vector Hn = (H0

n, H
1
n, · · · , Hd

n) is the portfolio at time n. Writing
Sn = (S0

n, S
1
n, · · · , Sd

n) for the vector of prices at time n, the value of the
portfolio at time n is the scalar product

Vn(H) = Hn.Sn := Σd
i=0H

i
nS

i
n.

The discounted value is

Ṽn(H) = βn(Hn.Sn) = Hn.S̃n,

7



where βn := 1/S0
n and S̃n = (1, βnS

1
n, · · · , βnS

d
n) is the vector of discounted

prices.
Note. The previsibility of H reflects that there is no insider trading.

Definition. The strategy H is self-financing, H ∈ SF , if

Hn.Sn = Hn+1.Sn (n = 0, 1, · · · , N − 1).

Interpretation. When new prices Sn are quoted at time n, the investor adjusts
his portfolio from Hn to Hn+1, without bringing in or consuming any wealth.
Note.

Vn+1(H)− Vn(H) = Hn+1.Sn+1 −Hn.Sn

= Hn+1.(Sn+1 − Sn) + (Hn+1.Sn −Hn.Sn).

For a self-financing strategy, the second term on the right is zero. Then the
LHS, the net increase in the value of the portfolio, is shown as due only to
the price changes Sn+1 − Sn. So for H ∈ SF ,

Vn(H)− Vn−1(H) = Hn(Sn − Sn−1),

∆Vn(H) = Hn.∆Sn, Vn(H) = V0(H) + Σn
1Hj.∆Sj

and Vn(H) is the martingale transform of S by H (III.6). Similarly with
discounting:

∆Ṽn(H) = Hn.∆S̃n, Ṽn(H) = V0(H) + Σn
1Hj.∆S̃j

(∆S̃n := S̃n − S̃n−1 = βnSn − βn−1Sn−1).
As in I, we are allowed to borrow (so S0

n may be negative) and sell short
(so Si

n may be negative for i = 1, · · · , d). So it is hardly surprising that if we
decide what to do about the risky assets, the bank account will take care of
itself, in the following sense.

Proposition. If ((H1
n, · · · , Hd

n))
N
n=0 is predictable and V0 is F0-measurable,

there is a unique predictable process (H0
n)

N
n=0 such thatH = (H0, H1, · · · , Hd)

is self-financing with initial value V0.

Proof. If H is self-financing, then as above

Ṽn(H) = Hn.S̃n = H0
n +H1

nS̃
1
n + · · ·+Hd

nS̃
d
n,
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while as Ṽn = H.S̃n,

Ṽn(H) = V0 + Σn
1 (H

1
j∆S̃1

j + · · ·+Hd
j∆S̃d

j )

(S̃n = (1, βnS
1
n, · · · , βnS

d
n), so S̃0

n ≡ 1, ∆S̃0
n = 0). Equate these:

H0
n = V0 + Σn

1 (H
1
j∆S̃1

j + · · ·+Hd
j∆S̃d

j )− (H1
nS̃

1
n + · · ·+Hd

nS̃
d
n),

which defines H0
n uniquely. The terms in S̃i

n are H i
n∆S̃i

n−H i
nS̃

i
n = −H i

nS̃
i
n−1,

which is Fn−1-measurable. So

H0
n = V0 + Σn−1

1 (H1
j∆S̃1

j + · · ·+Hd
j∆S̃d

j )− (H1
nS

1
n−1 + · · ·+Hd

nS̃
d
n−1),

where asH1, · · · , Hd are predictable, all terms on the RHS are Fn−1-measurable,
so H0 is predictable. //

Numéraire. What units do we reckon value in? All that is really necessary is
that our chosen unit of account should always be positive (as we then reckon
our holdings by dividing by it, and one cannot divide by zero). Common
choices are pounds sterling (UK), dollars (US), euros etc. Gold is also pos-
sible (now priced in sterling etc. – but the pound sterling represented an
amount of gold, till the UK ‘went off the gold standard’). By contrast, risky
stocks can have value 0 (if the company goes bankrupt). We call such an
always-positive asset, used to reckon values in, a numéraire.

Of course, one has to be able to change numéraire – e.g. when going
from UK to the US or eurozone. As one would expect, this changes nothing
important. In particular, we quote (numéraire invariance theorem – see e.g.
[BK] Prop. 4.1.1) that the set SF of self-financing strategies is invariant un-
der change of numéraire.
Note. 1. This alerts us to what is meant by ‘risky’. To the owner of a gold-
mine, sterling is risky. The danger is not that the UK government might go
bankrupt, but that sterling might depreciate against the dollar, or euro, etc.
2. With this understood, we shall feel free to refer to our numéraire as ‘bank
account’. The point is that we don’t trade in it (why would a goldmine owner
trade in gold?); it is the other – ‘risky’ – assets that we trade in.

§2. Viability (NA): Existence of Equivalent Martingale Measures.

Although we are allowed to borrow (from the bank), and sell (stocks)
short, we are – naturally – required to stay solvent (recall that trading while

9



insolvent is an offence under the Companies Act!).

Definition. A strategy H is admissible if it is self-financing, and Vn(H) ≥ 0
for each time n = 0, 1, · · · , N .

Recall that arbitrage is riskless profit – making ‘something out of noth-
ing’. Formally:

Definition. An arbitrage strategy is an admissible strategy with zero initial
value and positive probability of a positive final value.
Definition. A market is viable if no arbitrage is possible, i.e. if the market
is arbitrage-free (no-arbitrage, NA).

This leads to the first of two fundamental results:

Theorem (NA iff EMMs exist). The market is viable (is arbitrage-free, is
NA) iff there exists a probability measure P ∗ equivalent to P (i.e., having the
same null sets) under which the discounted asset prices are P ∗-martingales
– that is, iff there exists an equivalent martingale measure (EMM).

Proof. ⇐. Assume such a P ∗ exists. For any self-financing strategy H, we
have as before

Ṽn(H) = V0(H) + Σn
1Hj.∆S̃j.

By the Martingale Transform Lemma, S̃j a (vector) P ∗-martingale implies
Ṽn(H) is a P ∗-martingale. So the initial and final P ∗-expectations are the
same: using E∗ for P ∗-expectation,

E∗(ṼN(H)) = E∗(Ṽ0(H)).

If the strategy is admissible and its initial value – the RHS above – is zero,
the LHS E∗(ṼN(H)) is zero, but ṼN(H) ≥ 0 (by admissibility). Since each
P ({ω}) > 0 (by assumption), each P ∗({ω}) > 0 (by equivalence). This and
ṼN(H) ≥ 0 force ṼN(H) = 0 (sum of non-negatives can only be 0 if each
term is 0). So no arbitrage is possible. //

The converse is true, but harder, and needs a preparatory result – which
is interesting and important in its own right.
Separating Hyperplane Theorem (SHT).

In a vector space V , a hyperplane is a translate of a (vector) subspace
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U of codimension 1 – that is, U and some one-dimensional subspace, say R,
together span V : V is the direct sum V = U ⊕R (e.g., R3 = R2 ⊕R). Then

H = [f, α] := {x : f(x) = α}

for some α and linear functional f . In the finite-dimensional case, of dimen-
sion n, say, one can think of f(x) as an inner product,

f(x) = f.x = f1x1 + . . .+ fnxn.

The hyperplane H = [f, α] separates sets A,B ⊂ V if

f(x) ≥ α ∀ x ∈ A, f(x) ≤ α ∀ x ∈ B

(or the same inequalities with A,B, or ≥,≤, interchanged).
Call a set A in a vector space V convex if

x, y ∈ A, 0 ≤ λ ≤ 1 ⇒ λx+ (1− λ)y ∈ A

– that is, A contains the line-segment joining any pair of its points.
We can now state (without proof) the SHT (see e,g, [BK] App. C).

SHT. Any two non-empty disjoint convex sets in a vector space can be sep-
arated by a hyperplane.

A cone is a subset of a vector space closed under vector addition and
multiplication by positive constants (so: like a vector subspace, but with a
sign-restriction in scalar multiplication).

We turn now to the proof of the converse.

Proof of the converse (not examinable). ⇒: Write Γ for the cone of strictly
positive random variables. Viability (NA) says us that for any admissible
strategy H,

V0(H) = 0 ⇒ ṼN(H) /∈ Γ. (∗)

To any admissible process (H1
n, · · · , Hd

n), we associate its discounted cu-
mulative gain process

G̃n(H) := Σn
1 (H

1
j∆S̃1

j + · · ·+Hd
j∆S̃d

j ).

By the Proposition, we can extend (H1, · · · , Hd) to a unique predictable pro-
cess (H0

n) such that the strategy H = ((H0
n, H

1
n, · · · , Hd

n)) is self-financing
with initial value zero. By NA, G̃N(H) = 0 – that is, G̃N(H) /∈ Γ.
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We now form the set V of random variables G̃N(H), withH = (H1, · · · , Hd)
a previsible process. This is a vector subspace of the vector space RΩ of ran-
dom variables on Ω, by linearity of the gain process G(H) in H. By (∗), this
subspace V does not meet Γ. So V does not meet the subset

K := {X ∈ Γ : ΣωX(ω) = 1}.

Now K is a convex set not meeting the origin. By the Separating Hyper-
plane Theorem, there is a vector λ = (λ(ω) : ω ∈ Ω) such that for all X ∈ K

λ.X := Σωλ(ω)X(ω) > 0, (1)

but for all G̃N(H) in V,

λ.G̃N(H) = Σωλ(ω)G̃N(H)(ω) = 0. (2)

Choosing each ω ∈ Ω successively and taking X to be 1 on this ω and zero
elsewhere, (1) tells us that each λ(ω) > 0. So

P ∗({ω}) := λ(ω)/(Σω′∈Ωλ(ω
′))

defines a probability measure equivalent to P (no non-empty null sets). With
E∗ as P ∗-expectation, (2) says that

E∗G̃N(H) = 0,

i.e.
E∗ΣN

1 Hj.∆S̃j = 0.

In particular, choosing for each i to hold only stock i,

E∗ΣN
1 H

i
j∆S̃i

j = 0 (i = 1, · · · , d).

By the Martingale Transform Lemma, this says that the discounted price
processes (S̃i

n) are P ∗-martingales. //
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