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§3. Complete Markets: Uniqueness of EMMs.

A contingent claim (option, etc.) can be defined by its payoff function, h
say, which should be non-negative (options confer rights, not obligations, so
negative values are avoided by not exercising the option), and FN -measurable
(so that we know how to evaluate h at the terminal time N).

Definition. A contingent claim defined by the payoff function h is attain-
able if there is an admissible strategy worth (i.e., replicating) h at time N .
A market is complete if every contingent claim is attainable.

Theorem (complete iff EMM unique). A viable market is complete iff
there exists a unique probability measure P ∗ equivalent to P under which
discounted asset prices are martingales – that is, iff equivalent martingale
measures are unique.

Proof. ⇒: Assume viability and completeness. Then for any FN -measurable
random variable h ≥ 0, there exists an admissible (so self-financing) strategy
H replicating h: h = VN(H). As H is self-financing, by §1

h/S0
N = ṼN(H) = V0(H) + ΣN

1 Hj.∆S̃j.

We know by the Theorem of §2 that an equivalent martingale measure
P ∗ exists; we have to prove uniqueness. So, let P1, P2 be two such equivalent
martingale measures. For i = 1, 2, (Ṽn(H))Nn=0 is a Pi-martingale. So,

Ei(ṼN(H)) = Ei(V0(H)) = V0(H),

since the value at time zero is non-random (F0 = {∅,Ω}). So

E1(h/S
0
N) = E2(h/S

0
N).

Since h is arbitrary, E1, E2 have to agree on integrating all non-negative
integrands. Taking negatives and using linearity: they have to agree on non-
positive integrands also. Splitting an arbitrary integrand into its positive and
negative parts: they have to agree on all integrands. Now Ei is expectation
(i.e., integration) with respect to the measure Pi, and measures that agree
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on integrating all integrands must coincide. So P1 = P2. //

Before proving the converse, we prove a lemma. Recall that an admissible
strategy is a self-financing strategy with all values non-negative. The Lemma
shows that the non-negativity of contingent claims extends to all values of
any self-financing strategy replicating it – in other words, this gives equiva-
lence of admissible and self-financing replicating strategies.

Lemma. In a viable market, any attainable h (i.e., any h that can be repli-
cated by an admissible strategy H) can also be replicated by a self-financing
strategy H.

Proof. IfH is self-financing and P ∗ is an equivalent martingale measure under
which discounted prices S̃ are P ∗-martingales (such P ∗ exist by viability and
the Theorem of §2), Ṽn(H) is also a P ∗-martingale, being the martingale
transform of S̃ by H (see §1). So

Ṽn(H) = E∗(ṼN(H)|Fn) (n = 0, 1, · · · , N).

If H replicates h, VN(H) = h ≥ 0, so discounting, ṼN(H) ≥ 0, so the above
equation gives Ṽn(H) ≥ 0 for each n. Thus all the values at each time n are
non-negative – not just the final value at time N – so H is admissible. //

Proof of the Theorem (continued). ⇐ (not examinable): Assume the market
is viable but incomplete: then there exists a non-attainable h ≥ 0. By the
Lemma, we may confine attention to self-financing strategies H (which will
then automatically be admissible). By the Proposition of §1, we may confine
attention to the risky assets S1, · · · , Sd, as these suffice to tell us how to
handle the bank account S0.

Call Ṽ the set of random variables of the form

U0 + ΣN
1 Hn.∆S̃n

with U0 F0-measurable (i.e. deterministic) and ((H1
n, · · · , Hd

n))
N
n=0 predictable;

this is a vector space. Then by above, the discounted value h/S0
N does not

belong to Ṽ , so Ṽ is a proper subspace of the vector space RΩ of all random
variables on Ω. Let P ∗ be a probability measure equivalent to P under which
discounted prices are martingales (such P ∗ exist by viability, by the Theorem
of §2). Define the scalar product

(X,Y ) → E∗(XY )
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on random variables on Ω. Since Ṽ is a proper subspace, by Gram-Schmidt
orthogonalisation there exists a non-zero random variable X orthogonal to
Ṽ . That is,

E∗(X) = 0.

Write ∥X∥∞ := max{|X(ω)| : ω ∈ Ω}, and define P ∗∗ by

P ∗∗({ω}) =
(
1 +

X(ω)

2∥X∥∞

)
P ∗({ω}).

By construction, P ∗∗ is equivalent to P ∗ (same null-sets - actually, as P ∗ ∼ P
and P has no non-empty null-sets, neither do P ∗, P ∗∗). As X is non-zero,
P ∗∗ and P ∗ are different. Now

E∗∗(ΣN
1 Hn.∆S̃n) = ΣωP

∗∗(ω)
(
ΣN

1 Hn.∆S̃n

)
(ω)

= Σω

(
1 +

X(ω)

2∥X∥∞

)
P ∗(ω)

(
ΣN

1 Hn.∆S̃n

)
(ω).

The ‘1’ term on the right gives E∗(ΣN
1 Hn.∆S̃n), which is zero since this is a

martingale transform of the E∗-martingale S̃n. The ‘X’ term gives a multiple
of the inner product

(X,ΣN
1 Hn.∆S̃n),

which is zero asX is orthogonal to Ṽ and ΣN
1 Hn.∆S̃n ∈ Ṽ . By the Martingale

Transform Lemma, S̃n is a P ∗∗-martingale since H (previsible) is arbitrary.
Thus P ∗∗ is a second equivalent martingale measure, different from P ∗. So
incompleteness implies non-uniqueness of equivalent martingale measures, as
required. //

Martingale Representation. To say that every contingent claim can be repli-
cated means that every P ∗-martingale (where P ∗ is the risk-neutral measure,
which is unique) can be written, or represented, as a martingale transform
(of the discounted prices) by the replicating (perfect-hedge) trading strategy
H. In stochastic-process language, this says that all P ∗-martingales can be
represented as martingale transforms of discounted prices. Such Martingale
Representation Theorems hold much more generally, and are very important.
For the Brownian case, see VI and [RY], Ch. V.
Note. In the example of Chapter I, we saw that the simple option there could

3



be replicated. More generally, in our market set-up, all options can be repli-
cated – our market is complete. Similarly for the Black-Scholes theory below.

§4. The Fundamental Theorem of Asset Pricing.

We summarise what we have learned so far. We call a measure P ∗ under
which discounted prices S̃n are P ∗-martingales a martingale measure. Such
a P ∗ equivalent to the true probability measure P is called an equivalent
martingale measure. Then
1 (No-Arbitrage Theorem: §2). If the market is viable (arbitrage-free),
equivalent martingale measures P ∗ exist.
2 (Completeness Theorem: §3). If the market is complete (all contingent
claims can be replicated), equivalent martingale measures are unique. Com-
bining:

Theorem (Fundamental Theorem of Asset Pricing). In a complete
viable market, there exists a unique equivalent martingale measure P ∗ (or
Q).

Let h (≥ 0, FN -measurable) be any contingent claim, H an admissible
strategy replicating it:

VN(H) = h.

As Ṽn is the martingale transform of the P ∗-martingale S̃n (by Hn), Ṽn is a
P ∗-martingale. So V0(H)(= Ṽ0(H)) = E∗(ṼN(H)). Writing this out in full:

V0(H) = E∗(h/S0
N).

More generally, the same argument gives Ṽn(H) = Vn(H)/S0
n = E∗[(h/S0

N)|Fn]:

Vn(H) = S0
nE

∗(
h

S0
N

|Fn) (n = 0, 1, · · · , N).

It is natural to call V0(H) above the value of the contingent claim h at
time 0, and Vn(H) above the value of h at time n. For, if an investor sells the
claim h at time n for Vn(H), he can follow strategy H to replicate h at time
N and clear the claim. To sell the claim for any other amount would provide
an arbitrage opportunity (as with the argument for put-call parity). So this
value Vn(H) is the arbitrage price (or more exactly, arbitrage-free price or
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no-arbitrage price); an investor selling for this value is perfectly hedged.
We note that, to calculate prices as above, we need to know only

(i) Ω, the set of all possible states,
(ii) the σ-field F and the filtration (or information flow) (Fn),
(iii) the EMM P ∗ (or Q).
We do NOT need to know the underlying probability measure P – only its
null sets, to know what ‘equivalent to P ’ means (actually, in this model, only
the empty set is null).

Now option pricing is our central task, and for pricing purposes P ∗ is
vital and P itself irrelevant. We thus may – and shall – focus attention on
P ∗, which is called the risk-neutral probability measure. Risk-neutrality is
the central concept of the subject. The concept of risk-neutrality is due in
its modern form to Harrison and Pliska [HP] in 1981 – though the idea can
be traced back to actuarial practice much earlier. Harrison and Pliska call
P ∗ the reference measure; other names are risk-adjusted or martingale mea-
sure. The term ‘risk-neutral’ reflects the P ∗-martingale property of the risky
assets, since martingales model fair games.

To summarise, we have the

Theorem (Risk-Neutral Pricing Formula). In a complete viable market,
arbitrage-free prices of assets are their discounted expected values under the
risk-neutral (equivalent martingale) measure P ∗ (or Q). With payoff h,

Vn(H) = (1 + r)−(N−n)E∗[VN(H)|Fn] = (1 + r)−(N−n)E∗[h|Fn].

§5. European Options. The Discrete Black-Scholes Formula.

We consider the simplest case, the Cox-Ross-Rubinstein binomial model
of 1979; see [CR], [BK].

We take d = 1 for simplicity (one risky asset, one riskless asset or bank
account); the price vector is (S0

n, S
1
n), or ((1 + r)n, Sn), where

Sn+1 =

{
Sn(1 + a) with probability p,
Sn(1 + b) with probability 1− p

with −1 < a < b, S0 > 0. So writing N for the expiry time,

Ω = {1 + a, 1 + b}N ,
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each ω ∈ Ω representing the successive values of Tn+1 := Sn+1/Sn, n =
0, 1, · · · , N − 1. The filtration is F0 = {∅,Ω} (trivial σ-field), FT = F = 2Ω

(power-set of Ω: class of all subsets of Ω), Fn = σ(S1, · · · , Sn) = σ(T1, · · · , Tn).
For ω = (ω1, · · · , ωN) ∈ Ω, P ({ω1, · · · , ωN}) = P (T1 = ω1, · · · , TN = ωN),
so knowing the probability measure P (equivalently, knowing p) means we
know the distribution of (T1, · · · , TN).

For p∗ ∈ (0, 1) to be determined, let P ∗ correspond to p∗ as P does to p.
Then the discounted price (S̃n) is a P ∗-martingale iff

E∗[S̃n+1|Fn] = S̃n, E∗[(S̃n+1/S̃n)|Fn] = 1,

E∗[Tn+1|Fn] = 1 + r (n = 0, 1, · · · , N − 1),

since Sn = S̃n(1 + r)n, Tn+1 = Sn+1/Sn = (S̃n+1/S̃n)(1 + r). But

E∗(Tn+1|Fn) = (1 + a).p∗ + (1 + b).(1− p∗)

is a weighted average of 1 + a and 1 + b; this can be 1 + r iff r ∈ [a, b]. As
P ∗ is to be equivalent to P and P has no non-empty null-sets, r = a, b are
excluded. Thus by §2:

Lemma. The market is viable (arbitrage-free) iff r ∈ (a, b).

Next, 1+r = (1+a)p∗+(1+b)(1−p∗), r = ap∗+b(1−p∗): r−b = p∗(a−b):

Lemma. The equivalent martingale measure exists, is unique, and is given
by

p∗ = (b− r)/(b− a).

Corollary. The market is complete.

Now SN = SnΠ
N
n+1Ti. By the Fundamental Theorem of Asset Pricing,

the price Cn of a call option with strike-price K at time n is

Cn = (1 + r)−(N−n)E∗[(SN −K)+|Fn]

= (1 + r)−(N−n)E∗[(SnΠ
N
n+1Ti −K)+|Fn].

Now the conditioning on Fn has no effect – on Sn as this is Fn-measurable
(known at time n), and on the Ti as these are independent of Fn. So

Cn = (1 + r)−(N−n)E∗[(SnΠ
N
n+1Ti −K)+]

= (1 + r)−(N−n)ΣN−n
j=0

(
N − n

j

)
p∗j(1− p∗)N−n−j(Sn(1 + a)j(1 + b)N−n−j −K)+;
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here j, N − n− j are the numbers of times Ti takes the two possible values
1 + a, 1 + b. This is the discrete Black-Scholes formula of Cox, Ross &
Rubinstein (1979) for pricing a European call option in the binomial model.
For a European put option, we can either argue similarly or use put-call
parity (I.3).

We can find the (perfect-hedge) strategy for replicating this explicitly.
Write

c(n, x) := ΣN−n
j=0

(
N − n

j

)
p∗j(1− p∗)N−n−j(x(1 + a)j(1 + b)N−n−j −K)+.

Then c(n, x) is the undiscounted P ∗-expectation of the call at time n given
that Sn = x. This must be the value of the portfolio at time n if the strategy
H = (Hn) replicates the claim:

H0
n(1 + r)n +HnSn = c(n, Sn)

(here by previsibility H0
n and Hn are both functions of S0, · · · , Sn−1 only).

Now Sn = Sn−1Tn = Sn−1(1 + a) or Sn−1(1 + b), so:

H0
n(1 + r)n +HnSn−1(1 + a) = c(n, Sn−1(1 + a))

H0
n(1 + r)n +HnSn−1(1 + b) = c(n, Sn−1(1 + b)).

Subtract:

HnSn−1(b− a) = c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a)).

So Hn in fact depends only on Sn−1, Hn = Hn(Sn−1) (by previsibility), and

Proposition. The perfect hedging strategy Hn replicating the European
call option above is given by

Hn = Hn(Sn−1) =
c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a))

Sn−1(b− a)
.

Notice that the numerator is the difference of two values of c(n, x) with
the larger value of x in the first term (recall b > a). When the payoff function
c(n, x) is an increasing function of x, as for the European call option consid-
ered here, this is non-negative. In this case, the Proposition gives Hn ≥ 0:
the replicating strategy does not involve short-selling. We record this as:
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Corollary. When the payoff function is a non-decreasing function of the
final asset price SN , the perfect-hedging strategy replicating the claim does
not involve short-selling of the risky asset.

§6. Continuous-Time Limit of the Binomial Model.

Suppose now that we wish to price an option in continuous time with
initial stock price S0, strike price K and expiry T . We can use the work
above to give a discrete-time approximation, where N → ∞. Given R ≥ 0,
to be thought of as an instantaneous interest rate in continuous time, define
r by

r := RT/N : eRT = limN→∞(1 +
RT

N
)N = limN→∞(1 + r)N .

Here r, which tends to zero as N → ∞, represents the interest rate in dis-
crete time for the approximating binomial model.
For σ > 0 fixed (σ2 is to be a variance in continuous time, which will corre-
spond to the volatility of the stock), define a, b by

log((1 + a)/(1 + r)) = −σ/
√
N, log((1 + b)/(1 + r)) = σ/

√
N

(a, b both go to zero as N → ∞). We now have a sequence of binomial
models, for each of which we can price options as in §5. We shall show that
the pricing formula converges as N → ∞ to a limit (which we shall identify
later with the continuous Black-Scholes formula of Ch. VI); see e.g. [BK],
4.6.2.

Lemma. Let (XN
j )Nj=1 be iid with mean µN satisfying

NµN → µ (N → ∞)

and variance σ2(1 + o(1))/N . If YN := ΣN
1 X

N
j , then YN converges in distri-

bution to normality:

YN → Y = N(µ, σ2) (N → ∞).

Proof. Use characteristic functions: since YN has mean µN = µ(1 + o(1))/N
and variance as given, it also has second moment σ2(1 + o(1))/N . So it has
characteristic function

ϕN(u) := E exp{iuYN} = ΠN
1 E exp{iuXN

j } = [E exp{iuXN
1 }]N
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= (1 +
iuµ

N
− 1

2

σ2u2

N
+ o(

1

N
))N → exp{iuµ− 1

2
σ2u2} (N → ∞).

This is the characteristic function of the normal law N(µ, σ2). The result
follows, since convergence of characteristic functions implies convergence in
distribution by Lévy’s continuity theorem for characteristic functions ([W],
§18.1). //

We can apply this to pricing the call option above:

C
(N)
0 = (1 +

RT

N
)−NE∗[(S0Π

N
1 Tn −K)+]

= E∗[(S0 exp{YN} − (1 +
RT

N
)−NK)+], (1)

where
YN :=

∑N

1
log(Tn/(1 + r)).

Since Tn = TN
n above takes values 1 + b, 1 + a, XN

n := log(TN
n /(1 + r)) takes

values log((1 + b)/(1 + r)), log((1 + a)/(1 + r)) = ±σ/
√
N (so has second

moment σ2/N). Its mean is

µN := log
(1 + b

1 + r

)
(1−p∗)+log

(1 + a

1 + r

)
p∗ =

σ√
N
(1−p∗)− σ√

N
p∗ = (1−2p∗)σ/

√
N

(we shall see below that 1 − 2p∗ = O(1/
√
N), so the Lemma will apply).

Now (recall r = RT/N = O(1/N))

a = (1 + r)e−σ/
√
N − 1, b = (1 + r)eσ/

√
N − 1,

so a, b, r → 0 as N → ∞, and

1− 2p∗ = 1− 2
(b− r)

(b− a)
= 1− 2

[(1 + r)eσ/
√
N − 1− r]

[(1 + r)(eσ/
√
N − e−σ/

√
N)]

= 1− 2
[eσ/

√
N − 1]

[eσ/
√
N − e−σ/

√
N ]

.

Now expand the two [· · ·] terms above by Taylor’s theorem: they give

σ√
N
(1 +

1

2

σ√
N

+ · · ·), 2σ√
N
(1 +

σ2

6N
+ · · ·).
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So, cancelling σ/
√
N ,

1− 2p∗ = 1−
2(1 + 1

2
σ√
N
+ · · ·)

2(1 + σ2

6N
+ · · ·)

= −1

2

σ√
N

+O(1/N) :

NµN = N.
σ√
N
.(−1

2

σ√
N

+O(1/N)) → µ := −1

2
σ2 (N → ∞).

We are thus in the situation of the Lemma, with µ = −1
2
σ2. In (1), we

have YN → Y in distribution and (1 + RT
N
)−N → e−RT as N → ∞. This

suggests that
C

(N)
0 → E[(S0e

Y − e−RTK)+],

where E is the expectation for the distribution of Y , which is N(−1
2
σ2, σ2).

This can be justified, by standard properties of convergence in distribution
(see e.g. [W]). So if Z := (Y + 1

2
σ2)/σ, Z ∼ N(0, 1), Y = −1

2
σ2 + σZ, and

C
(N)
0 →

∫ ∞

−∞
[S0 exp{−

1

2
σ2 + σx} − e−RTK]+

e−
1
2
x2

√
2π

dx (N → ∞).

To evaluate the integral, note first that [...] > 0 where

S0 exp{−
1

2
σ2 + σx} > e−RTK, −1

2
σ2 + σx > log(K/S0)−RT :

x > [log(K/S0) +
1

2
σ2 −RT ]/σ = c, say.

So writing Φ(x) for the standard normal distribution function,

C0 = S0

∫ ∞

c
e−

1
2
σ2

. exp{−1

2
x2 + σx}dx/

√
2π −Ke−RT [1− Φ(c)].

The remaining integral is∫ ∞

c
exp{−1

2
(x− σ)2}dx/

√
2π =

∫ ∞

c−σ
exp{−1

2
u2}du/

√
2π = 1− Φ(c− σ).

So the option price is given as a function of the initial price S0, strike price
K, expiry T , interest rate R and variance σ2 by

C0 = S0[1−Φ(c−σ)]−Ke−RT [1−Φ(c)], c = [log(K/S0)+
1

2
σ2−RT ]/σ.
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To compare with our later work, it is convenient now to replace σ2 by
σ2T ; thus σ2 is now the variance per unit time. Its square root, σ, is called
the volatility of the stock. Then c− σ, c above become c±, where

c± := [log(K/S0)− (R± 1

2
σ2)T ]/σ

√
T .

The result extends immediately to give the price of the option at time t ∈
(0, T ), by replacing T by T − t, S0 by St.

We re-write the formula in more customary notation. First, write r in
place of R for the interest rate. Next, using the symmetry of the normal
distribution, 1− Φ(c±) = Φ(−c±) = Φ(d±), say, where

d± := −c± = [log(S/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t :

the price of the European call option is

ct = StΦ(d+)− e−r(T−t)KΦ(d−).

This is the famous continuous Black-Scholes formula. We shall return to it
in Chapter VI, where we re-derive it by continuous-time methods (Brownian
motion and Itô calculus).
Note. 1. The same argument (or put-call parity) gives the value of the Eu-
ropean put option as pt = Ke−r(T−t)Φ(−d−)− StΦ(−d+).
2. The proof above starts from a binomial distribution and ends with a nor-
mal distribution. The binomial distribution is that of a sum of independent
Bernoulli random variables. That sums (equivalently, averages) of indepen-
dent random variables with finite means and variances gives a normal limit
is the content of the Central Limit Theorem or CLT (the Law of Errors, as
physicists would say). The particular form of the CLT used here - normal
approximation to the binomial - is the de Moivre-Laplace limit theorem.

The picture for this is familiar. The Binomial distribution B(n, p) has a
histogram with n+ 1 bars, whose heights peak at the mode and decrease to
either side. For large n, one can draw a smooth curve through the histogram.
The curve looks like a normal density curve (with the appropriate location
and scale, i.e. mean and variance). The result proved above, and the classical
de Moivre-Laplace limit theorem, say that this is exactly right.
3. The Cox-Ross-Rubinstein binomial model above goes over in the passage
to the limit to the geometric Brownian motion model of VI.1. We will later
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re-derive the continuous Black-Scholes formula in Ch. VI, using continuous-
time methods (Itô calculus), rather than using the method above of deriving
the discrete Black-Scholes formula and going to the limit on the formula,
rather than the model.
4. For similar derivations of the discrete Black-Scholes formula and the pas-
sage to the limit to the continuous Black-Scholes formula, see e.g. [CR], §5.6.
5. One of the most striking features of the Black-Scholes formula is that it
does not involve the mean rate of return µ of the stock - only the riskless
interest-rate r and the volatility of the stock σ. Mathematically, this reflects
the fact that the change of measure involved in the passage to the risk-neutral
measure involves a change of drift. This has the effect of eliminating the µ
term; see Ch. VI.
6. The Black-Scholes formula involves the parameter σ (where σ2 is the vari-
ance of the stock per unit time), called the volatility of the stock. In financial
terms, this represents how sensitive the stock-price is to new information -
how ‘volatile’ the market’s assessment of the stock is. This volatility param-
eter is very important, but we do not know it; instead, we have to estimate
the volatility for ourselves. There are two approaches:
(a) historic volatility: here we use Time Series methods to estimate σ from
past price data. Clearly the more variability we observe in runs of past prices,
the more volatile the stock price is, and given enough data we can estimate
σ in this way.
(b) implied volatility: match observed option prices to theoretical option
prices. For, the price we see options traded at tells us what the market
thinks the volatility is (estimating volatility this way works because the de-
pendence is monotone; see later).

If the Black-Scholes model were perfect, these two estimates would agree
(to within sampling error). But discrepancies can be observed, which shows
the imperfections of our model.

Volatility estimation is a major topic, both theoretically and in practice.
We return to this in IV.7.3-4 below and VI.7.5-8. But looking ahead:
(i) trading is itself one of the major causes of volatility;
(ii) options like volatility [i.e., option prices go up with volatility].
Recalling Ch. I, this shows that volatility is a ‘bad thing’ from the point of
view of the real economy (uncertainty about, e.g., future material costs is
nothing but a nuisance to manufacturers), but a ‘good thing’ for financial
markets (trading increases volatility, which increases option prices, which
generates more trade ...) – at the cost of increased instability.
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