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Chapter V. STOCHASTIC PROCESSES IN CONTINUOUS TIME

§1. Filtrations; Finite-Dimensional Distributions

The underlying set-up is as before, but now time is continuous rather
than discrete; thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . ..
The information available at time t is the σ-field Ft; the collection of these as
t ≥ 0 varies is the filtration, modelling the information flow. The underlying
probability space, endowed with this filtration, gives us the stochastic basis
(filtered probability space) on which we work,

We assume that the filtration is complete (contains all subsets of null-sets
as null-sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs

(the ‘usual conditions’ – right-continuity and completeness – in Meyer’s ter-
minology).

A stochastic process X = (Xt)t≥0 is a family of random variables defined
on a filtered probability space with Xt Ft-measurable for each t: thus Xt is
known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time-points in [0,∞), (Xt1 , · · · , Xtn), or
(X(t1), · · · , X(tn)) (for typographical convenience, we use both notations in-
terchangeably, with or without ω: Xt(ω), or X(t, ω)) is a random n-vector,
with a distribution, µ(t1, · · · , tn) say. The class of all such distributions as
{t1, · · · , tn} ranges over all finite subsets of [0,∞) is called the class of all
finite-dimensional distributions of X. These satisfy certain obvious consis-
tency conditions:
(i) deletion of one point ti can be obtained by ‘integrating out the unwanted
variable’, as usual when passing from joint to marginal distributions,
(ii) permutation of the ti permutes the arguments of the measure µ(t1, · · · , tn)
on Rn.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the DANIELL-KOLMOGOROV Theorem: P. J. Daniell in
1918, A. N. Kolmogorov in 1933).

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
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X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realise X = (Xt(ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t → Xt(ω) is called the sample path, or simply path, given by ω) - or
more briefly, continuous. This is possible for the extremely important case of
Brownian motion (below), for example, and its relatives. Sometimes we need
to allow our random function Xt(ω) to have jumps. It is then customary,
and convenient, to require Xt to be right-continuous with left limits (rcll),
or càdlàg (continu à droite, limite à gauche) - i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for in-
stance, for the Poisson process and its relatives.

General results on realisability – whether or not it is possible to realise,
or obtain, a process so as to have its paths in a particular function space –
are known, but it is usually better to construct the processes we need directly
on the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization, ...) see e.g.
Doob’s classic book [D].

The continuous-time theory is technically much harder than the discrete-
time theory, for two reasons:
(i) questions of path-regularity arise in continuous time but not in discrete
time,
(ii) uncountable operations (like taking sup over an interval) arise in contin-
uous time. But measure theory is constructed using countable operations:
uncountable operations risk losing measurability.

Filtrations and Insider Trading
Recall that a filtration models an information flow. In our context, this

is the information flow on the basis of which market participants – traders,
investors etc. – make their decisions, and commit their funds and effort.
All this is information in the public domain – necessarily, as stock exchange
prices are publicly quoted.

Again necessarily, many people are involved in major business projects
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and decisions (an important example: mergers and acquisitions, or M&A)
involving publicly quoted companies. Frequently, this involves price-sensitive
information. People in this position are – rightly – prohibited by law from
profiting by it directly, by trading on their own account, in publicly quoted
stocks but using private information. This is rightly regarded as theft at the
expense of the investing public.1 Instead, those involved in M&A etc. should
seek to benefit legitimately (and indirectly) – enhanced career prospects,
commission or fees, bonuses etc.

The regulatory authorities (Securities and Exchange Commission – SEC
– in US; Financial Conduct Authority (FCA) and Prudential Regulation Au-
thority (PRA, part of the Bank of England (BoE) in UK) monitor all trading
electronically. Their software alerts them to patterns of suspicious trades.
The software design (necessarily secret, in view of its value to criminals)
involves all the necessary elements of Mathematical Finance in exaggerated
form: economic and financial insight, plus: mathematics; statistics (espe-
cially pattern recognition, data mining and machine learning); numerics and
computation.

§2. Classes of Processes.

1. Martingales.
The martingale property in continuous time is just that suggested by the

discrete-time case:
E[Xt|Fs] = Xs (s < t),

and similarly for submartingales and supermartingales. There are regular-
ization results, under which one can take Xt right-continuous in t. Among
the contrasts with the discrete case, we mention that the Doob-Meyer de-
composition, easy in discrete time (III.8), is a deep result in continuous time.
For background, see e.g.
MEYER, P.-A. (1966): Probabilities and potentials. Blaisdell
- and subsequent work by Meyer and the French school (Dellacherie & Meyer,
Probabilités et potentiel, I-V, etc.
2. Gaussian Processes.

Recall the multivariate normal distribution N(µ,Σ) in n dimensions. If
µ ∈ Rn, Σ is a non-negative definite n×n matrix, X has distribution N(µ,Σ)

1The plot of the film Wall Street revolves round such a case, and is based on real life
– recommended!
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if it has characteristic function

ϕX(t) := E exp{itT .X} = exp{itT .µ− 1

2
tTΣt} (t ∈ Rn).

If further Σ is positive definite (so non-singular), X has density

fX(x) =
1

(2π)
1
2
n|Σ|

1
2

exp{−1

2
(x− µ)TΣ−1(x− µ)}

(Edgeworth’s Theorem of 1893: F. Y. Edgeworth (1845-1926), English statis-
tician).

A process X = (Xt)t≥0 is Gaussian if all its finite-dimensional distribu-
tions are Gaussian. Such a process can be specified by:
(i) a measurable function µ = µ(t) with EXt = µ(t),
(ii) a non-negative definite function σ(s, t) with

σ(s, t) = cov(Xs, Xt).

Gaussian processes have many interesting properties. Among these, we
quote Belayev’s dichotomy: with probability one, the paths of a Gaussian
process are either continuous, or extremely pathological: for example, un-
bounded above and below on any time-interval, however short. Naturally,
we shall confine attention in this course to continuous Gaussian processes.

3. Markov Processes.
X is Markov if for each t, each A ∈ σ(Xs : s > t) (the ‘future’) and

B ∈ σ(Xs : s < t) (the ‘past’),

P (A|Xt, B) = P (A|Xt).

That is, if you know where you are (at time t), how you got there doesn’t
matter so far as predicting the future is concerned – equivalently, past and
future are conditionally independent given the present.

The same definition applied to Markov processes in discrete time.
X is said to be strong Markov if the above holds with the fixed time t

replaced by a stopping time T (a random variable). This is a real restriction
of the Markov property in the continuous-time case (though not in discrete
time).
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4. Diffusions.
A diffusion is a path-continuous strong-Markov process such that for each

time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(Xt+h −Xt)|Xt = x],

σ2(t, x) := limh↓0
1

h
E[(Xt+h −Xt)

2|Xt = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient.

§3. Brownian Motion.

The Scottish botanist Robert Brown observed pollen particles in suspen-
sion under a microscope in 1828 and 1829 (though others had observed the
phenomenon before him),2 and observed that they were in constant irregular
motion.

In 1900 L. Bachelier considered Brownian motion a possible model for
stock-market prices:
BACHELIER, L. (1900): Théorie de la spéculation. Ann. Sci. Ecole Nor-
male Supérieure 17, 21-86
– the first time Brownian motion had been used to model financial or eco-
nomic phenomena, and before a mathematical theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of parti-
cles in suspension, and used it to estimate Avogadro’s number (N ∼ 6×1023),
based on the diffusion coefficient D in the Einstein relation

varXt = Dt (t > 0).

In 1923 Norbert WIENER defined and constructed Brownian motion rig-
orously for the first time. The resulting stochastic process is often called the
Wiener process in his honour, and its probability measure (on path-space) is
called Wiener measure.

We define standard Brownian motion on R, BM or BM(R), to be a
stochastic process X = (Xt)t≥0 such that
1. X0 = 0,
2. X has independent increments: Xt+u−Xt is independent of σ(Xs : s ≤ t)

2The Roman author Lucretius observed this phenomenon in the gaseous phase – dust
particles dancing in sunbeams – in antiquity: De rerum naturae, c. 50 BC.
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for u ≥ 0,
3. X has stationary increments: the law of Xt+u −Xt depends only on u,
4. X has Gaussian increments: Xt+u−Xt is normally distributed with mean
0 and variance u,

Xt+u −Xt ∼ N(0, u),

5. X has continuous paths: Xt is a continuous function of t, i.e. t 7→ Xt is
continuous in t.

For time t in a finite interval – [0, 1], say – we can use the following filtered
space:
Ω = C[0, 1], the space of all continuous functions on [0, 1].
The points ω ∈ Ω are thus random functions, and we use the coordinate
mappings: Xt, or Xt(ω), = ωt.
The filtration is given by Ft := σ(Xs : 0 ≤ s ≤ t), F := F1.
P is the measure on (Ω,F) with finite-dimensional distributions specified
by the restriction that the increments Xt+u −Xt are stationary independent
Gaussian N(0, u).

Theorem (WIENER, 1923). Brownian motion exists.

The best way to prove this is by construction, and one that reveals some
properties. The proof that follows is originally due to Paley, Wiener and
Zygmund (1933) and Lévy (1948), but is re-written in the modern language
of wavelet expansions. We omit details; for these, see e.g. [BK] 5.3.1, or
SP l20-22. The Haar system (Hn) = (Hn(.)) is a complete orthonormal
system (cons) of functions in L2[0, 1]. The Schauder System ∆n) is obtained
by integrating the Haar system. Consider the triangular function (or ‘tent
function’)

∆(t) =


2t on [0, 1

2
),

2(1− t) on [1
2
, 1],

0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t), and define the nth Schauder function ∆n

by
∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
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interval, which is small for n, j large). We see that∫ t

0

H(u)du =
1

2
∆(t),

and similarly ∫ t

0

Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2 (n = 2j + k ≥ 1).

The Schauder system (∆n) is again a complete orthogonal system on L2[0, 1].
We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For (Zn)
∞
0

independent N(0, 1) random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Thus the above description does indeed define a stochastic process X =
(Xt)t∈[0,1] on (C[0, 1],F , (Ft), P ). The construction gives X on C[0, n] for
each n = 1, 2, · · ·, and combining these: X exists on C[0,∞). It is also
unique (a stochastic process is uniquely determined by its finite-dimensional
distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work
and some knowledge of measure theory. However, existence is really all we
need, and this we shall take for granted. For background, see any measure-
theoretic text on stochastic processes. The classic is Doob’s book, quoted
above (see VIII.2 there). Excellent modern texts include Karatzas & Shreve
[KS] (see particularly §2.2-4 for construction and §5.8 for applications to eco-
nomics), Revuz & Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] Itô
calculus – below).

We shall henceforth denote standard Brownian motion BM(R) – or just
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BM for short – by B = (Bt) (B for Brown), though W = (Wt) (W for
Wiener) is also common. Standard Brownian motion BM(Rd) in d dimen-
sions is defined by B(t) := (B1(t), · · · , Bd(t)), where B1, · · · , Bd are inde-
pendent standard Brownian motions in one dimension (independent copies of
BM(R)).

Zeros.
It can be shown that Brownian motion oscillates:

lim supt→∞Xt = +∞, lim inft→∞Xt = −∞ a.s.

Hence, for every n there are zeros (times t with Xt = 0) of X with t ≥ n
(indeed, infinitely many such zeros). So if

Z := {t ≥ 0 : Xt = 0}

denotes the zero-set of BM(R):
1. Z is an infinite set.
Next, if tn are zeros and tn → t, then by path-continuity B(tn) → B(t); but
B(tn) = 0, so B(t) = 0:
2. Z is a closed set (Z contains its limit points).
Less obvious are the next two properties:
3. Z is a perfect set: every point t ∈ Z is a limit point of points in Z. So
there are infinitely many zeros in every neighbourhood of every zero (so the
paths must oscillate amazingly fast!).
4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts
Z: it is impossible to draw a realistic picture of a Brownian path.

Brownian Scaling.
For each c ∈ (0,∞), X(c2t) is N(0, c2t), so Xc(t) := c−1X(c2t) is N(0, t).

Thus Xc has all the defining properties of a Brownian motion (check). So,
Xc IS a Brownian motion:

Theorem. If X is BM and c > 0, Xc(t) := c−1X(c2t), then Xc is again a
BM .

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X(.) is a fractal. So too is the zero-set Z.

8



Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

§4. Quadratic Variation of Brownian Motion

Recall that for ξ N(µ, σ2), ξ has moment-generating function (MGF)

M(t) := E exp{tξ} = exp{µt+ 1

2
σ2t2}.

We take µ = 0 below; we can recover the general case by adding µ back on.
So, for ξ N(0, σ2),

M(t) := E exp{tξ} = exp{1
2
σ2t2}

= 1 +
1

2
σ2t2 +

1

2!
(
1

2
σ2t2)

2

+O(t6)

= 1 +
1

2!
σ2t2 +

3

4!
σ4t4 +O(t6).

So as the Taylor coefficients of the MGF are the moments (hence the name
MGF!),

E(ξ2) = varξ = σ2, E(ξ4) = 3σ4, so var(ξ2) = E(ξ4)−[E(ξ2)]
2
= 2σ4.

For B BM , this gives in particular

EBt = 0, varBt = t, E[(Bt)
2] = t, var[(Bt)

2] = 2t2.

In particular, for t > 0 small, this shows that the variance of B2
t is negligible

compared with its expected value. Thus, the randomness in B2
t is negligible

compared to its mean for t small.
This suggests that if we take a fine enough partition P of [0, T ] – a finite

set of points
0 = t0 < t1 < · · · < tk = T

with |P| := max |ti − ti−1| small enough – then writing

∆B(ti) := B(ti)−B(ti−1), ∆ti := ti − ti−1,
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Σ(∆B(ti))
2 will closely resemble ΣE[(∆B(ti)

2], which is Σ∆ti = Σ(ti −
ti−1) = T . This is in fact true a.s.:

Σ(∆B(ti))
2 → Σ∆ti = T as max |ti − ti−1| → 0.

This limit is called the quadratic variation V 2
T of B over [0, T ]:

Theorem. The quadratic variation of a Brownian path over [0, T ] exists and
equals T , a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.

If we increase t by a small amount to t+ dt, the increase in the quadratic
variation can be written symbolically as (dBt)

2, and the increase in t is dt.
So, formally we may summarise the theorem as

(dBt)
2 = dt.

Suppose now we look at the ordinary variation Σ|∆Bt|, rather than the
quadratic variation Σ(∆Bt)

2. Then instead of Σ(∆Bt)
2 ∼ Σ∆t ∼ t, we get

Σ|∆Bt| ∼ Σ
√
∆t. Now for ∆t small,

√
∆t is of a larger order of magnitude

that ∆t. So if Σ∆t = t converges, Σ
√
∆t diverges to +∞. This suggests –

what is in fact true – the

Corollary. The paths of Brownian motion are of infinite variation - their
variation is +∞ on every interval, a.s.

The quadratic variation result above leads to Lévy’s 1948 result, the Mar-
tingale Characterization of Brownian Motion. Recall that Bt is a continuous
martingale with respect to its natural filtration (Ft) and with quadratic vari-
ation t. There is a remarkable converse:

Theorem (Lévy; Martingale Characterization of Brownian Mo-
tion). If M is any continuous local (Ft)-martingale with M0 = 0 and
quadratic variation t, then M is an (Ft)-Brownian motion.

This can be expressed differently:
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Theorem (Lévy). If M is any continuous (Ft)-martingale with M0 = 0
and M2

t − t a martingale, then M is an (Ft)-Brownian motion.

For proof, see e.g. [RW1], I.2. Observe that for s < t,

B2
t = [Bs + (Bt −Bs)]

2 = B2
s + 2Bs(Bt −Bs) + (Bt −Bs)

2,

E[B2
t |Fs] = B2

s +2BsE[(Bt −Bs)|Fs] +E[(Bt −Bs)
2|Fs] = B2

s +0+ (t− s) :

E[B2
t − t|Fs] = B2

s − s :

B2
t − t is a martingale.

Quadratic Variation.
The theory above extends to continuous martingales (bounded continu-

ous martingales in general, but we work on a finite time-interval [0, T ], so
continuity implies boundedness). We quote:

Theorem. A continuous martingale M is of finite quadratic variation ⟨M⟩,
and ⟨M⟩ is the unique continuous increasing adapted process vanishing at
zero with M2 − ⟨M⟩ a martingale.

Corollary. A continuous martingale M has infinite variation.

For proof, see e.g. [RY], IV.1.

Quadratic Covariation. We write ⟨M,M⟩ for ⟨M⟩, and extend ⟨ ⟩ to a bilin-
ear form ⟨., .⟩ with two different arguments by the polarization identity:

⟨M,N⟩ := 1

4
(⟨M +N,M +N⟩ − ⟨M −N,M −N⟩).

If N is of finite variation, M ±N has the same quadratic variation as M , so
⟨M,N⟩ = 0.

Itô’s Lemma. We discuss Itô’s Lemma in more detail in §6 below; we pause
here to give the link with quadratic variation and covariation. We quote: if
f(t, x1, · · · , xd) is C

1 in its zeroth (time) argument t and C2 in its remaining
d space arguments xi, and M = (M1, · · · ,Md) is a continuous vector mar-
tingale, then (writing fi, fij for the first partial derivatives of f with respect
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to its ith argument and the second partial derivatives with respect to the ith
and jth arguments) f(Mt) has stochastic differential

df(Mt) = f0(M)dt+ Σd
i=1fi(Mt)dM

i
t +

1

2
Σd

i,j=1fij(Mt)d⟨M i,M j⟩t.

Integration by Parts. If f(t, x1, x2) = x1x2, we obtain

d(MN)t = NdMt +MdNt +
1

2
⟨M,N⟩t.

Note. The integration-by-parts formula – a special case of Itô’s Lemma, as
above – is in fact equivalent to Itô’s Lemma: either can be used to derive the
other. Rogers & Williams [RW1, IV.32.4] describe the integration-by-parts
formula as ‘the cornerstone of stochastic calculus’; this description may also
be applied to Itô’s Lemma.

We shall need to extend quadratic variation and quadratic covariation to
stochastic integrals (to be defined below). If

Z =

∫
HdM, dZ = HdM,

d⟨Z⟩ = (dZ)2 = H2(dM)2 = H2d⟨M⟩.
Similarly (or by polarization), if Zi =

∫
HidMi (i = 1, 2),

d⟨Z1, Z2⟩ = H1H2d⟨M1,M2⟩.

Fractals Everywhere.
As we saw, a Brownian path is a fractal – a self-similar object. So too is

its zero-set Z. Fractals were studied, named and popularised by the French
mathematician Benôit B. Mandelbrot (1924-2010). See his books, and
Michael F. Barnsley: Fractals everywhere. Academic Press, 1988.

Fractals look the same at all scales. This is diametrically opposite to the
familiar functions of Calculus. In Differential Calculus, a differentiable func-
tion has a tangent; this means that locally, its graph looks straight; similarly
in Integral Calculus.

While most continuous functions we encounter are differentiable, at least
piecewise (i.e., except for ‘kinks’), there is a sense in which the typical, or
generic, continuous function is nowhere differentiable. Thus Brownian paths
may look pathological at first sight – but in fact they are typical!
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