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§5. Stochastic Integrals (Itô Calculus)

Stochastic integration was introduced by K. ITÔ in 1944, hence its name
Itô calculus. It gives a meaning to

∫ t

0
XdY =

∫ t

0
Xs(ω)dYs(ω), for suitable

stochastic processes X and Y , the integrand and the integrator. We shall con-
fine our attention here to the basic case with integrator Brownian motion:
Y = B. Much greater generality is possible: for Y a continuous martingale,
see [KS] or [RY]; for a systematic general treatment, see
MEYER, P.-A. (1976): Un cours sur les intégrales stochastiques. Séminaire
de Probabilités X: Lecture Notes on Math. 511, 245-400, Springer.

The first thing to note is that stochastic integrals with respect to Brown-
ian motion, if they exist, must be quite different from the measure-theoretic
integral of Ch. II.2. For, the Lebesgue-Stieltjes integrals described there
have as integrators the difference of two monotone (increasing) functions (by
Jordan’s theorem), which are locally of finite (bounded) variation, FV. But
we know from §4 that Brownian motion is of infinite (unbounded) variation
on every interval. So Lebesgue-Stieltjes and Itô integrals must be fundamen-
tally different.

In view of the above, it is quite surprising that Itô integrals can be de-
fined at all. But if we take for granted Itô’s fundamental insight that they
can be, it is obvious how to begin and clear enough how to proceed. We
begin with the simplest possible integrands X, and extend successively much
as we extended the measure-theoretic integral of Ch. II.

1. Indicators.
If Xt(ω) = I[a,b](t), there is exactly one plausible way to define

∫
XdB:

∫ t

0

XdB, or

∫ t

0

Xs(ω)dBs(ω), :=


0 if t ≤ a,
Bt −Ba if a ≤ t ≤ b,
Bb −Ba if t ≥ b.

2. Simple functions. Extend by linearity: if X is a linear combination of
indicators, X = ΣciI[ai,bi], we should define∫ t

0

XdB := Σci

∫ t

0

I[ai,bi]dB.
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Already one wonders how to extend this from constants ci to suitable ran-
dom variables, and one seeks to simplify the obvious but clumsy three-line
expressions above. It turns out that finite sums are not essential: one can
have infinite sums, but now we take the ci uniformly bounded.

We begin again, this time calling a stochastic process X simple if there is
an infinite sequence

0 = t0 < t1 < · · · < tn < · · · → ∞

and uniformly bounded Ftn-measurable random variables ξn (|ξn| ≤ C for all
n and ω, for some C) if Xt(ω) can be written in the form

Xt(ω) = ξ0(ω)I{0}(t) + Σ∞
i=0ξi(ω)I(ti,ti+1](t) (0 ≤ t < ∞, ω ∈ Ω).

The only definition of
∫ t

0
XdB that agrees with the above for finite sums is,

if n is the unique integer with tn ≤ t < tn+1,

It(X) :=

∫ t

0

XdB = Σn−1
0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn))

= Σ∞
0 ξi(B(t ∧ ti+1)−B(t ∧ ti)) (0 ≤ t < ∞).

We note here some properties of the stochastic integral defined so far:

A. I0(X) = 0 P − a.s.

B. Linearity. It(aX + bY ) = aIt(X) + bIt(Y ).
Proof. Linear combinations of simple functions are simple.

C. E[It(X)|Fs] = Is(X) P − a.s. (0 ≤ s < t < ∞) :
It(X) is a continuous martingale.
Proof. There are two cases to consider.
(i) Both s and t belong to the same interval [tn, tn+1). Then

It(X) = Is(X) + ξn(B(t)−B(s)).

But ξn is Ftn-measurable, so Fs-measurable (tn ≤ s), so independent of
B(t)−B(s) (independent increments property of B). So

E[It(X)|Fs] = Is(X) + ξnE[B(t)−B(s)|Fs] = Is(X).
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(ii) s < t belongs to a different interval from t: s ∈ [tm, tm+1) for somem < n.
Then

E[It(x)|Fs] = E(E[It(X)|Ftn ]|Fs) (iterated conditional expectations)

= E(Itn(X)|Fs),

since ξn Ftn-measurable and independent increments of B give

E[ξn(B(t)−B(tn))|Ftn ] = ξnE[B(t)−B(tn)|Ftn ] = ξn.0 = 0.

Continuing in this way, we can reduce successively to tm+1:

E[It(X)|Fs] = E[Itm(X)|Fs].

But Itm(X) = Is(X) + ξm(B(s) − B(tm)); taking E[.|Fs] the second term
gives zero as above, giving the result. //

Note. The stochastic integral for simple integrands is essentially a martingale
transform, and the above is essentially the proof of Ch. III that martingale
transforms are martingales.

We pause to note a property of martingales which we shall need below.
Call Xt − Xs the increment of X over (s, t]. Then for a martingale X,
the product of the increments over disjoint intervals has zero mean. For, if
s < t ≤ u < v,

E[(Xv −Xu)(Xt −Xs)] = E[E[(Xv −Xu)(Xt −Xs)|Fu]]

= E[(Xt −Xs)E[(Xv −Xu)|Fu]],

taking out what is known (as s, t ≤ u). The inner expectation is zero by the
martingale property, so the LHS is zero, as required.

D (Itô isometry). E[(It(X))2], or E[(
∫ t

0
XsdBs)

2], = E
∫ t

0
X2

sds.
Proof. The LHS above is E[It(X).It(X)], i.e.

E[(Σn−1
i=0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn)))

2].

Expanding out the square, the cross-terms have expectation zero by above,
leaving

E[Σn−1
i=0 ξ

2
i (B(ti+i −B(ti))

2 + ξ2n(B(t)−B(tn))
2].
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Since ξi is Fti-measurable, each ξ2i -term is independent of the squared Brown-
ian increment term following it, which has expectation var(B(ti+1)−B(ti)) =
ti+1 − ti. So we obtain

Σn−1
i=0 E[ξ2i ](ti+1 − ti) + E[ξ2n](t− tn).

This is
∫ t

0
E[X2

u]du = E
∫ t

0
X2

udu, as required.

E. Itô isometry (continued). It(X)− Is(X) =
∫ t

s
XudBu satisfies

E[(

∫ t

s

XudBu)
2] = E[

∫ t

s

X2
udu] P − a.s.

Proof: as above.

F. Quadratic variation. The quadratic variation of It(X) =
∫ t

0
XudBu is∫ t

0
X2

udu.
This is proved in the same way as the case X ≡ 1, that B has quadratic

variation process t.

Integrands.
The properties above suggest that

∫ t

0
XdB should be defined only for

processes with ∫ t

0

EX2
udu < ∞ for all t.

We shall restrict attention to such X in what follows. This gives us an L2-
theory of stochastic integration (compare the L2-spaces introduced in Ch.
II), for which Hilbert-space methods are available.

3. Approximation.
Recall steps 1 (indicators) and 2 (simple integrands). By analogy with the

integral of Ch. II, we seek a suitable class of integrands suitably approximable
by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of left-continuous adapted
processes X with

∫ t

0
EX2

udu < ∞ for all t > 0 (or all t ∈ [0, T ] with finite
time-horizon T , as here),
(ii) Each such X may be approximated by a sequence of simple integrands
Xn so that the stochastic integral It(X) =

∫ t

0
XdB may be defined as the
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limit of It(Xn) =
∫ t

0
XndB,

(iii) The stochastic integral
∫ t

0
XdB so defined still has properties A-F above.

It is not possible to include detailed proofs of these assertions in a course
of this type [recall that we did not construct the measure-theoretic integral
of Ch. II in detail either - and this is harder!]. The key technical ingredient
needed is the Kunita-Watanabe inequalities. See e.g. [KS], §§3.1-2.

One can define stochastic integration in much greater generality.
1. Integrands. The natural class of integrands X to use here is the class of
predictable processes. These include the left-continuous processes to which
we confine ourselves above.
2. Integrators. One can construct a closely analogous theory for stochastic
integrals with the Brownian integrator B above replaced by a continuous
local martingale integrator M (or more generally by a local martingale: see
below). The properties above hold, with D replaced by

E[(

∫ t

0

XudMu)
2] = E

∫ t

0

X2
ud⟨M⟩u.

See e.g. [KS], [RY] for details.
One can generalise further to semimartingale integrators: these are pro-

cesses expressible as the sum of a local martingale and a process of (locally)
finite variation. Now C is replaced by: stochastic integrals of local martin-
gales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and Itô’s Lemma

Suppose that U, V are adapted processes,with U locally integrable (so∫ t

0
Usds is defined as an ordinary integral, as in Ch. II), and V is left-

continuous with
∫ t

0
EV 2

u du < ∞ for all t (so
∫ t

0
VsdBs is defined as a stochastic

integral, as in §5). Then

Xt := x0 +

∫ t

0

Usds+

∫ t

0

VsdBs

defines a stochastic process X with X0 = x0. It is customary, and convenient,
to express such an equation symbolically in differential form, in terms of the
stochastic differential equation

dXt = Utdt+ VtdBt, X0 = x0. (SDE)
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Now suppose that f : R2 → R is a function, continuously differentiable
once in its first argument (which will denote time), and twice in its second
argument (space): f ∈ C1,2. The question arises of giving a meaning to the
stochastic differential df(t,Xt) of the process f(t,Xt), and finding it.

Recall the Taylor expansion of a smooth function of several variables,
f(x0, x1, · · · , xd) say. We use suffices to denote partial derivatives: fi :=
∂f/∂xi, fi,j := ∂2f/∂xi∂xj (recall that if partials not only exist but are
continuous, then the order of partial differentiation can be changed: fi,j =
fj,i, etc.). Then for x = (x0, x1, · · · , xd) near u,

f(x) = f(u) + Σd
i=0(xi − ui)fi(u) +

1

2
Σd

i,j=0(xi − ui)(xj − uj)fi,j(u) + · · ·

In our case (writing t0 in place of 0 for the starting time):

f(t,Xt) = f(t0, X(t0))+(t−t0)f1(t0, X(t0))+(X(t)−X(t0))f2+
1

2
(t−t0)

2f11+

(t− t0)(X(t)−X(t0))f12 +
1

2
(X(t)−X(t0))

2f22 + · · · ,

which may be written symbolically as

df(t,X(t)) = f1dt+ f2dX +
1

2
f11(dt)

2 + f12dtdX +
1

2
f22(dX)2 + · · · .

In this, we
(i) substitute dXt = Utdt+ VtdBt from above,
(ii) substitute (dBt)

2 = dt, i.e. |dBt| =
√
dt, from §4:

df = f1dt+f2(Udt+V dB)+
1

2
f11(dt)

2+f12dt(Udt+V dB)+
1

2
f22(Udt+V dB)2+· · ·

Now using (dB)2 = dt,

(Udt+ V dB)2 = V 2dt+ 2UV dtdB + U2(dt)2

= V 2dt+ higher-order terms :

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dB + higher-order terms.

Summarising, we obtain Itô’s Lemma, the analogue for the Itô or stochastic
calculus of the chain rule for ordinary (Newton-Leibniz) calculus:
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Theorem (Itô’s Lemma). If Xt has stochastic differential

dXt = Utdt+ VtdBt, X0 = x0,

and f ∈ C1,2, then f = f(t,Xt) has stochastic differential

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dBt.

That is, writing f0 for f(0, x0), the initial value of f ,

f(t,Xt)) = f0 +

∫ t

0

(f1 + Uf2 +
1

2
V 2f22)dt+

∫ t

0

V f2dB.

This important result may be summarised as follows: use Taylor’s theo-
rem formally, together with the rule

(dt)2 = 0, dtdB = 0, (dB)2 = dt.

Itô’s Lemma extends to higher dimensions, as does the rule above:

df = (f0 + Σd
i=1Uifi +

1

2
Σd

1V
2
i fii)dt+ Σd

1VifidBi

(where Ui, Vi, Bi denote the ith coordinates of vectors U, V,B, fi, fii denote
partials as above); here the formal rule is

(dt)2 = 0, dtdBi = 0, (dBi)
2 = dt, dBidBj = 0 (i ̸= j).

Corollary. Ef(t,Xt) = f0 +
∫ t

0
E[f1 + Uf2 +

1
2
V 2f22]dt.

Proof.
∫ t

0
V f2dB is a stochastic integral, so a martingale, so its expectation

is constant (= 0, as it starts at 0). //

Note. Powerful as it is in the setting above, Itô’s Lemma really comes into its
own in the more general setting of semimartingales. It says there that if X is
a semimartingale and f is a smooth function as above, then f(t,X(t)) is also
a semimartingale. The ordinary differential dt gives rise to the bounded-
variation part, the stochastic differential gives rise to the martingale part.
This closure property under very general non-linear operations is very pow-
erful and important.
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Example: The Ornstein-Uhlenbeck Process.
The most important example of a SDE for us is that for geometric Brow-

nian motion (VI.1 below). We close here with another example.
Consider now a model of the velocity Vt of a particle at time t (V0 = v0),

moving through a fluid or gas, which exerts
(i) a frictional drag, assumed propertional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas. The basic model is the SDE

dV = −βV dt+ cdB, (OU)

whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/β and diffusion coefficient D := 1

2
c2/β2. It is a stationary

Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N(0, βD) and
whose limiting correlation function is e−β|.|.

If we integrate the OU velocity process to get the OU displacement pro-
cess, we lose the Markov property (though the process is still Gaussian).
Being non-Markov, the resulting process is much more difficult to analyse.

The OU process is the prototype of processes exhibiting mean reversion,
or a central push: frictional drag acts as a restoring force tending to push the
process back towards its mean. It is important in many areas, including
(i) statistical mechanics, where it originated,
(ii) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates (the mean represents the ‘natural’ interest rate),
(iii) stochastic volatility models, where the volatility σ itself is now a stochas-
tic process σt, subject to an SDE of OU type.
Theory of interest rates.

This subject dominates the mathematics of money market, or bond mar-
kets. These are more important in today’s world than stock markets, but are
more complicated, so we must be brief here. The area is crucially important
in macro-economic policy, and in political decision-making, particularly after
the financial crisis (”credit crunch”). Government policy is driven by fear of
speculators in the bond markets (rather than aimed at inter-governmental
cooperation against them). The mathematics is infinite-dimensional (at each
time-point t we have a whole yield curve over future times), but reduces to
finite-dimensionality: bonds are only offered at discrete times, with a tenor
structure (a finite set of maturity times). See VI.7.2, Week 11.
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Chapter VI. MATHEMATICAL FINANCE IN CONTINUOUS
TIME

§1. Geometric Brownian Motion (GBM)

As before, we write B for standard Brownian motion. We write Bµ,σ for
Brownian motion with drift µ and diffusion coefficient σ: the path-continuous
Gaussian process with independent increments such that

Bµ,σ(s+ t)−Bµ,σ(s) is N(µt, σ2t).

This may be realised as

Bµ,σ(t) = µt+ σB(t).

Consider the process

Xt = f(t, Bt) := x0. exp{(µ− 1

2
σ2)t+ σBt}.

Here, since

f(t, x) = x0. exp{(µ− 1

2
s2)t+ σx},

f1 = (µ− 1

2
σ2)f, f2 = σf, f22 = σ2f.

By Itô’s Lemma (Ch. V: dXt = Utdt + VtdBt and f smooth implies df =
(f1+Uf2+

1
2
V 2f22)dt+V f2dBt) we have (taking U = 0, V = 1, X = B),

dXt = df = [(µ− 1

2
σ2)f +

1

2
σ2f ]dt+ σfdBt :

dXt = µfdt+ σfdBt = µXtdt+ σXtdBt :

X satisfies the SDE
dXt = Xt(µdt+ σdBt), (GBM)

and is called geometric Brownian motion (GBM). We turn to its economic
meaning, and the role of the two parameters µ and σ, below.

We recall the model of Brownian motion from Ch. V. It was developed
(by Brown, Einstein, Wiener, ...) in statistical mechanics, to model the ir-
regular, random motion of a particle suspended in fluid under the impact of
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collisions with the molecules of the fluid.
The situation in economics and finance is analogous: the price of an asset

depends on many factors (a share in a manufacturing company depends on,
say, its own labour costs, and raw material prices for the articles it manu-
factures. Together, these involve, e.g., foreign exchange rates, labour costs –
domestic and foreign, transport costs, etc. – all of which respond to the un-
folding of events – economic data/political events/the weather/technological
change/labour, commercial and environmental legislation/ ... in time. There
is also the effect of individual transactions in the buying and selling of a
traded asset on the asset price. The analogy between the buffeting effect
of molecules on a particle in the statistical mechanics context on the one
hand, and that of this continuous flood of new price-sensitive information on
the other, is highly suggestive. The first person to use Brownian motion to
model price movements in economics was Bachelier in his celebrated thesis
of 1900.

Bachelier’s seminal work was not definitive (indeed, not correct), either
mathematically (it was pre-Wiener) or economically. In particular, Brownian
motion itself is inadequate for modelling prices, as
(i) it attains negative levels, and
(ii) one should think in terms of return, rather than prices themselves.
However, one can allow for both of these by using geometric, rather than
ordinary, Brownian motion as one’s basic model. This has been advocated
in economics from 1965 on by Samuelson1 – and was Itô’s starting-point for
his development of Itô or stochastic calculus in 1944 – and has now become
standard:
SAMUELSON, P. A. (1965): Rational theory of warrant pricing. Industrial
Management Review 6, 13-39,
SAMUELSON, P. A. (1973): Mathematics of speculative prices. SIAM Re-
view 15, 1-42.
Returning now to (GBM), the SDE above for geometric Brownian motion
driven by Brownian noise, we can see how to interpret it. We have a risky as-
set (stock), whose price at time t is Xt; dXt = X(t+dt)−X(t) is the change
in Xt over a small time-interval of length dt beginning at time t; dXt/Xt is
the gain per unit of value in the stock, i.e. the return. This is a sum of two
components:
(i) a deterministic component µdt, equivalent to investing the money risk-

1Paul A. Samuelson (1915-2009), American economist; Nobel Prize in Economics, 1970
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lessly in the bank at interest-rate µ (> 0 in applications), called the under-
lying return rate for the stock,
(ii) a random, or noise, component σdBt, with volatility parameter σ > 0
and driving Brownian motion B, which models the market uncertainty, i.e.
the effect of noise.
Justification. For a recent treatment of this and other diffusion models via
microeconomic arguments, see
[FS] FÖLLMER, H. & SCHWEIZER, M. (1993): A microeconomic approach
to diffusion models for stock prices. Mathematical Finance 3, 1-23.
Note. Observe the decomposition of what we are modelling into two com-
ponents: a systematic component and a random component (driving noise).
We have met such decompositions elsewhere – e.g. regression, and the Doob
decomposition.

§2. The Black-Scholes Model

For the purposes of this section only, it is convenient to be able to use the
‘W for Wiener’ notation for Brownian motion/Wiener process, thus liberating
B for the alternative use ‘B for bank [account]’. Thus our driving noise terms
will now involve dWt, our deterministic [bank-account] terms dBt.

We now consider an investor constructing a trading strategy in continuous
time, with the choice of two types of investment:
(i) riskless investment in a bank account paying interest at rate r > 0 (the
short rate of interest): Bt = B0e

rt (t ≥ 0) [we neglect the complications
involved in possible failure of the bank - though banks do fail - witness Barings
1995, or AIB 2002!];
(ii) risky investment in stock, one unit of which has price modelled as above
by GMB(µ, σ). Here the volatility σ > 0; the restriction 0 < r < µ on the
short rate r for the bank and underlying rate µ for the stock are economically
natural (but not mathematically necessary); the stock dynamics are thus
given by

dSt = St(µdt+ σdWt).

Notation. Later, we shall need to consider several types of risky stock - d
stocks, say. It is convenient, and customary, to use a superscript i to label
stock type, i = 1, · · · , d; thus S1, · · · , Sd are the risky stock prices. We can
then use a superscript 0 to label the bank account, S0. So with one risky
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asset as above (Week 9), the dynamics are

dS0
t = rS0

t dt,

dS1
t = µS1

t dt+ σS1
t dWt.

We shall focus on pricing at time 0 of options with expiry time T ; thus the
index-set for time t throughout may be taken as [0, T ] rather than [0,∞).

We proceed as in the discrete-time model of IV.1. A trading strategy H
is a vector stochastic process

H = (Ht : 0 ≤ t ≤ T ) = ((H0
t , H

1
t , · · · , Hd

t )) : 0 ≤ t ≤ T )

which is previsible: each H i
t is a previsible process (so, in particular, (Ft−)-

adapted) [we may simplify with little loss of generality by replacing previsi-
bility here by left-continuity of Ht in t]. The vector Ht = (H0

t , H
1
t , · · · , Hd

t )
is the portfolio at time t. If St = (S0

t , S
1
t , · · · , Sd

t ) is the vector of prices at
time t, the value of the portfolio at t is the scalar product

Vt(H) := Ht.St = Σd
i=0H

i
tS

i
t .

The discounted value is

Ṽt(H) = βt(Ht.St) = Ht.S̃t,

where βt := 1/S0
t = e−rt (fixing the scale by taking the initial bank account

as 1, S0
0 = 1), so

S̃t = (1, βtS
1
t , · · · , βtS

d
t )

is the vector of discounted prices.
Recall that

(i) in IV.1 H is a self-financing strategy if ∆Vn(H) = Hn.∆Sn, i.e. Vn(H) is
the martingale transform of S by H,
(ii) stochastic integrals are the continuous analogues of martingale trans-
forms.
We thus define the strategy H to be self-financing, H ∈ SF , if

dVt = Ht.dSt = Σd
0H

i
tdS

i
t .
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