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SOLUTIONS 4. 24.2.2014

Q1. Since f is clearly non-negative, to show that f is a (probability density)
function (in two dimensions), it suffices to show that f integrates to 1:∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy = 1, or

∫ ∫
f = 1.

Write
f1(x) :=

∫ ∞

−∞
f(x, y)dy, f2(y) :=

∫ ∞

−∞
f(x, y)dx.

Then to show
∫ ∫

f = 1, we need to show
∫∞
−∞ f1(x)dx = 1 (or

∫∞
−∞ f2(y)dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X, Y , then f1(x) is the density fX(x)
of X, f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have
the algebraic identity

(1− ρ2)Q ≡
[(y − µ2

σ2

)
− ρ

(x− µ1

σ1

)]2
+ (1− ρ2)

(x− µ1

σ1

)2
(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

∫ ∞

−∞

1

σ2

√
2π

√
1− ρ2

exp

(
−1

2
(y − cx)

2

σ2
2(1− ρ2)

)
dy,

(∗)
where

cx := µ2 + ρ
σ2

σ1

(x− µ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

,

which integrates to 1 (‘normal density’), proving
Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional). So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).
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Fact 2. X, Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, we showed

f1 = fX to be the N(µ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = µ1, EY = µ2, varX = σ2
1, varY = σ2

2.
This identifies four out of the five parameters: two means µi, two vari-

ances σ2
i . Next, recall the definition of conditional probability: P (A|B) :=

P (A ∩ B)/P (B). In the discrete case, if X,Y take possible values xi, yj
with probabilities fX(xi), fY (yj), (X,Y ) takes possible values (xi, yj) with
probabilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj|xi) = P (Y = yj&X = xi)/P (X = xi) = fX,Y (xi, yj)/
∑
j

fX,Y (xi, yj),

and similarly with X, Y interchanged.
In the density case, we have to replace sums by integrals:

fY |X(y|x) := fX,Y (x, y)/fX(x) = fX,Y (x, y)/
∫ ∞

−∞
fX,Y (x, y)dy.

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is N(µ2 + ρσ2

σ1
(x −

µ1), σ2
2(1− ρ2)).

Proof. Go back to completing the square (or, return to (*) with
∫
and dy

deleted):

f(x, y) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1

√
2π

.
exp(−1

2
(y − cx)

2/(σ2
2(1− ρ2)))

σ2

√
2π

√
1− ρ2

.

The first factor is f1(x), by Fact 1. So, fY |X(y|x) = f(x, y)/f1(x) is the
second factor:

fY |X(y|x) =
1√

2πσ2

√
1− ρ2

exp
( −(y − cx)

2

2σ2
2(1− ρ2)

)
,

where cx is the linear function of x given below (*). //

This not only completes the proof of Fact 4 but gives
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1).
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