livsoln4.tex

SOLUTIONS 4. 24.2.2014

Q1. Since f is clearly non-negative, to show that f is a (probability density) function (in two dimensions), it suffices to show that f integrates to 1:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1, \quad \text{or} \quad \int \int f = 1.$$

Write

$$f_1(x) := \int_{-\infty}^{\infty} f(x, y) dy, \qquad f_2(y) := \int_{-\infty}^{\infty} f(x, y) dx.$$

Then to show $\int \int f = 1$, we need to show $\int_{-\infty}^{\infty} f_1(x) dx = 1$ (or $\int_{-\infty}^{\infty} f_2(y) dy = 1$). Then f_1 , f_2 are densities, in *one* dimension. If $f(x, y) = f_{X,Y}(x, y)$ is the *joint* density of *two* random variables X, Y, then $f_1(x)$ is the density $f_X(x)$ of $X, f_2(y)$ the density $f_Y(y)$ of Y (f_1, f_2 , or f_X, f_Y , are called the *marginal* densities of the *joint* density f, or $f_{X,Y}$).

To perform the integrations, we have to *complete the square*. We have the algebraic identity

$$(1 - \rho^2)Q \equiv \left[\left(\frac{y - \mu_2}{\sigma_2}\right) - \rho \left(\frac{x - \mu_1}{\sigma_1}\right) \right]^2 + (1 - \rho^2) \left(\frac{x - \mu_1}{\sigma_1}\right)^2$$

(reducing the number of occurrences of y to 1, as we intend to integrate out y first). Then (taking the terms free of y out through the y-integral)

$$f_1(x) = \frac{\exp(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2)}{\sigma_1\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sigma_2\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left(\frac{-\frac{1}{2}(y-c_x)^2}{\sigma_2^2(1-\rho^2)}\right) dy,$$
(*)

where

$$c_x := \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1).$$

The integral is 1 ('normal density'). So

$$f_1(x) = \frac{\exp(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2)}{\sigma_1\sqrt{2\pi}},$$

which integrates to 1 ('normal density'), proving

Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal density functions $f_1(x), f_2(y)$ (one-dimensional). So we can write

$$f(x,y) = f_{X,Y}(x,y),$$
 $f_1(x) = f_X(x),$ $f_2(y) = f_Y(y).$

Fact 2. X, Y are normal: X is $N(\mu_1, \sigma_1^2)$, Y is $N(\mu_2, \sigma_2^2)$. For, we showed $f_1 = f_X$ to be the $N(\mu_1, \sigma_1^2)$ density above, and similarly for Y by symmetry. **Fact 3.** $EX = \mu_1, EY = \mu_2, varX = \sigma_1^2, varY = \sigma_2^2$.

This identifies four out of the five parameters: two means μ_i , two variances σ_i^2 . Next, recall the definition of conditional probability: $P(A|B) := P(A \cap B)/P(B)$. In the *discrete* case, if X, Y take possible values x_i, y_j with probabilities $f_X(x_i), f_Y(y_j), (X, Y)$ takes possible values (x_i, y_j) with probabilities $f_{X,Y}(x_i, y_j)$:

$$f_X(x_i) = P(X = x_i) = \sum_j P(X = x_i, Y = y_j) = \sum_j f_{X,Y}(x_i, y_j).$$

Then the *conditional* distribution of Y given $X = x_i$ is

$$f_{Y|X}(y_j|x_i) = P(Y = y_j \& X = x_i) / P(X = x_i) = f_{X,Y}(x_i, y_j) / \sum_j f_{X,Y}(x_i, y_j),$$

and similarly with X, Y interchanged.

In the *density* case, we have to replace *sums* by *integrals*:

$$f_{Y|X}(y|x) := f_{X,Y}(x,y) / f_X(x) = f_{X,Y}(x,y) / \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

Returning to the bivariate normal:

Fact 4. The conditional distribution of y given X = x is $N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2))$.

Proof. Go back to completing the square (or, return to (*) with \int and dy deleted):

$$f(x,y) = \frac{\exp(-\frac{1}{2}(x-\mu_1)^2/\sigma_1^2)}{\sigma_1\sqrt{2\pi}} \cdot \frac{\exp(-\frac{1}{2}(y-c_x)^2/(\sigma_2^2(1-\rho^2)))}{\sigma_2\sqrt{2\pi}\sqrt{1-\rho^2}}$$

The first factor is $f_1(x)$, by Fact 1. So, $f_{Y|X}(y|x) = f(x,y)/f_1(x)$ is the second factor:

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} \exp\Bigl(\frac{-(y-c_x)^2}{2\sigma_2^2(1-\rho^2)}\Bigr),$$

where c_x is the linear function of x given below (*). //

This not only completes the proof of Fact 4 but gives Fact 5. The conditional mean E(Y|X = x) is *linear* in x:

$$E(Y|X=x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1).$$
 NHB

 $\mathbf{2}$