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SOLUTIONS 5. 3.3.2014

Q1. That the conditional variance of Y given X = x is

var(Y |X = x) = σ2
2(1− ρ2).

follows from Prob4 Q4.
Recall (Prob4 Q3) that the variability (= variance) of Y is varY = σ2

2. By
Prob4 Q5, the variability remaining in Y when X is given (i.e., not accounted
for by knowledge of X) is σ2

2(1−ρ2). Subtracting: the variability of Y which
is accounted for by knowledge of X is σ2

2ρ
2. That is: ρ2 is the proportion of

the variability of Y accounted for by knowledge of X. So ρ is a measure of
the strength of association between Y and X.

Recall that the covariance is defined by

cov(X,Y ) := E[(X − EX)(Y − EY )] = E[(X − µ1)(Y − µ2)],

= E(XY )− (EX)(EY ),

and the correlation coefficient ρ, or ρ(X,Y ), defined by

ρ = ρ(X,Y ) := cov(X,Y )/(
√
varX

√
varY ) = E[(X − µ1)(Y − µ2)]/σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X,Y is a function of the other).

Q2. The correlation coefficient of X,Y is ρ.
Proof.

ρ(X, Y ) := E
[(X − µ1

σ1

)(Y − µ2

σ2

)]
=
∫ ∫ (x− µ1

σ1

)(y − µ2

σ2

)
f(x, y)dxdy.

Substitute for f(x, y) = c exp(−1
2
Q), and make the change of variables u :=

(x− µ1)/σ1, v := (y − µ2)/σ2:

ρ(X, Y ) =
1

2π
√
1− ρ2

∫ ∫
uv exp

(−[u2 − 2ρuv + v2]

2(1− ρ2)

)
dudv.
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Completing the square, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2. So

ρ(X, Y ) =
1√
2π

∫
u exp

(
−u2

2

)
du.

1√
2π

√
1− ρ2

∫
v exp

(
−(v − ρu)2

2(1− ρ2)

)
dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is ρu (‘normal density’). So

ρ(X, Y ) =
1√
2π

.ρ
∫

u2 exp

(
−u2

2

)
du = ρ

(‘normal variance’), as required. //
This completes the identification of all five parameters in the bivariate

normal distribution: two means µi, two variances σ2
i , one correlation ρ.

Q3. The bivariate normal law has elliptical contours.
Proof. The contours are Q(x, y) = const, which are ellipses.

Q4.

M(t1, t2) = E(exp(t1X + t2Y )) =
∫ ∫

exp(t1x+ t2y)f(x, y)dxdy

=
∫

exp(t1x)f1(x)dx
∫
exp(t2y)f(y|x)dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ
2
2, (1− ρ2)), so is

exp(cxt2 +
1
2
σ2
2(1− ρ2)t22). By Prob4 Q5 cxt2 = [µ2 + ρσ2

σ1
(x− µ1)]t2, so

M(t1, t2) = exp(t2µ2 − t2
σ2

σ1

µ1 +
1

2
σ2
2(1− ρ2)t22)

∫
exp([t1 + t2ρ

σ2

σ1

]x)f1(x)dx.

Since f1(x) is N(µ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(µ1[t1 + t2ρ
σ2

σ1
] + 1

2
σ2
1[. . .]

2). Combining and simplifying, we obtain

Q5. X, Y are independent if and only if ρ = 0.

Proof. For densities: X, Y are independent iff the joint density fX,Y (x, y)
factorises as the product of the marginal densities fX(x).fY (y)

For MGFs: X,Y are independent iff the joint MGF MX,Y (t1, t2) fac-
torises as the product of the marginal MGFs MX(t1).MY (t2). From Q4, this
occurs iff ρ = 0. Similarly with CFs, if we prefer to work with them. // NHB
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