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Ql. Vega for calls. With ¢(z) := e 2% /\/2r, ®(x) = [*_ ¢(u)du the
standard normal density and distribution functions, 7 := T — ¢ the time to
expiry, the Black-Scholes call price is
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6(da) = §ldy) .MV €727,
Exponentiating the definition of d,
el = (S/K).e7T 37T,

Combining,

¢(da) = o(d1).(S/K).e™: Ke "¢(da) = Sp(dn). (%)
Differentiating (BS) partially w.r.t. o gives

v:=8C/d0 = S¢(dy)dd, /0o — Ke " ¢(dy)ddy /Do
So by (),
v = 0C/0c = Sé(d)(dy — dy) /0o = Sp(dy)Do~/T) /B = Sp(dy)/T > 0.

Vega for puts.
The same argument gives v := JP/Jo > 0, starting with the Black-
Scholes formula for puts. Equivalently, we can use put-call parity

S+P—-C=Ke " :

OP/0o = 0C /0o > 0.
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Interpretation: ”Options like volatility”: the more uncertainty there is, i.e.
the higher the volatility, the more the ”insurance policy” of an option is
worth.

Q2.(1) Delta for calls.

A = 9C/0S = %[S@(dl) — Ke " ®(dy)]
= O(di) + S¢(d1>6acg - K€TT¢(d2)aail;
9(d1 — d)

= CID(d1) +S¢(d1> 99 )

by Q1 (x). Since d; — dy = 0+/T does not depend on S, this gives
A =®(dy) € (0,1).

Interpretation: the payoff (S — K), is increasing in .S, so the option price
should be also — and it is: A > 0.

Also, A < 1: options are to insure against adverse price movements. This
reflects that options are useful for this: if A were > 1, there would be no
advantage in using options to hedge — we would just use a combination of
cash and stock.

(i) Delta for puts.
Now put-call parity
S+P-C=Ke

and (i) give
0P/0S =0C/0S —1 € (—1,0).

Interpretation: now the payoff (K — S), is decreasing in S, so the option
price should be also — and it is. That A > —1 reflects that options are useful
for insuring against adverse price movements (as above): if A were < —1,
we would just use a combination of cash and stock.
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