
liv10.tex Week 10: 27.4.2015
Proof of the Black-Scholes PDE (continued).

Substituting the values above (Week 9) in the no-arbitrage relation gives

−SF2

F − SF2

.µ+
F

F − SF2

.
F1 + µSF2 +

1
2
σ2F22

F
= r.

So

−SF2µ+ F1 + µSF2 +
1

2
σ2S2F22 = rF − rSF2,

giving

F1 + rSF2 +
1

2
σ2S2F22 − rF = 0. (BS)

This completes the proof of the Black-Scholes PDE. //

Corollary. The no-arbitrage price of the derivative does not depend on the
mean return µ(t, .) of the underlying asset, only on its volatility σ(t, .) and
the short interest-rate.

The Black-Scholes PDE may be solved analytically, or numerically. We
give an alternative probabilistic approach below.

The Black-Scholes PDE is parabolic, and can be transformed into the
heat equation, whose solution can be written down in terms of an integral
and the heat kernel. This is the same as the probabilistic solution obtained
in Ch. IV (by taking the limit of the discrete-time BS formula), and again
below (by continuous-time methods).
Note. 1. Black and Scholes were classically trained applied mathematicians.
When they derived their PDE, they recognised it as parabolic. After some
months’ work, they were able to transform it into the heat equation. The
solution to this is known classically.1 On transforming back, they obtained
the Black-Scholes formula.

The Black-Scholes formula transformed the financial world. Before it (see

1See e.g. the link to MPC2 (Mathematics and Physics for Chemists, Year 2) on my
website, Weeks 4, 9. The solution is in terms of Green functions. The Green function for
(fundamental solution of) the heat equation has the form of a normal density. This reflects
the close link between the mathematics of the heat equation (J. Fourier (1768-1830) in
1807; Théorie analytique de la chaleur in 1822) and the mathematics of Brownian motion,
which as we have seen belongs to the 20th Century. The link was made by S. Kakutani
in 1944, and involves potential theory.
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Ch. I), the expert view was that asking what an option is worth was (in ef-
fect) a silly question: the answer would necessarily depend on the attitude to
risk of the individual considering buying the option. It turned out that – at
least approximately (i.e., subject to the restrictions to perfect – frictionless
– markets, including No Arbitrage – an over-simplification of reality) there
is an option value. One can see this in one’s head, without doing any math-
ematics, if one knows that the Black-Scholes market is complete (see VI.3,
VI.4 below). So, every contingent claim (option, etc.) can be replicated, in
terms of a suitable combination of cash and stock. Anyone can price this:
(i) count the cash, and count the stock;
(ii) look up the current stock price;
(iii) do the arithmetic.
2. The programmable pocket calculator was becoming available around this
time. Every trader immediately got one, and programmed it, so that he
could price an option (using the Black-Scholes model!) in real time, from
market data.
3. The missing quantity in the Black-Scholes formula is the volatility, σ. But,
the price is continuous and strictly increasing in σ (options like volatility!).
So there is exactly one value of σ that gives the price at which options are
being currently traded. The conclusion is that this is the value that the mar-
ket currently judges σ to be. This is the value (called the implied volatility
that traders use.
4. Because the Black-Scholes model is the benchmark model of mathematical
finance, and gives a value for σ at the push of a button, it is widely used.
5. This is despite the fact that no one actually believes the Black-Scholes
model! It gives at best an over-simplified approximation to reality. Indeed,
Fischer Black himself famously once wrote a paper called The holes in Black-
Scholes.
6. This is an interesting example of theory and practice interacting!
7. Black and Scholes has considerable difficulty in getting their paper pub-
lished! It was ahead of its time. When published, and its importance under-
stood, it changed its times.
8. Black-Scholes theory and its developments, plus the internet (a global
network of fibre-optic cables – using photons rather than electrons), were im-
portant contributory factors to globalization. Enormous sums of money can
be transported round the world at the push of a button, and are every day.
This has led to financial contagion – ”one country’s economic problem be-
comes the world’s economic problem”. (The Ebola virus comes to mind here.)
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§3. The Feynman-Kac Formula, Risk-Neutral Valuation and the
Continuous Black-Scholes Formula

Suppose we consider a SDE, with initial condition (IC), of the form

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ), (SDE)

Xt = x. (IC)

For suitably well-behaved functions µ, σ, this SDE has a unique solution
X = (Xs : t ≤ s ≤ T ), a diffusion. We refer for details on solutions of SDEs
and diffusions to an advanced text such as [RW2], [RY], [KS §5.7]. Uniqueness
of solutions of the SDE is related to completeness, and uniqueness of prices:
see VI.4 below. This is much as in the FTAP of Ch. IV, but the continuous-
time case is harder – we have to quote uniqueness rather than prove it as we
did there.

Taking existence of a unique solution for granted for the moment, consider
a smooth function F (s,Xs) of it. By Itô’s Lemma,

dF = F1ds+ F2dX +
1

2
F22(dX)2,

and as (dX)2 = (µds+ σdWs)
2 = σ2(dWs)

2 = σ2ds, this is

dF = F1ds+F2(µds+σdWs)+
1

2
σ2F22ds = (F1+µF2+

1

2
σ2F22)ds+σF2dWs.

(∗)
Now suppose that F satisfies the PDE, with boundary condition (BC),

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2F22(t, x) = g(t, x) (PDE)

F (T, x) = h(x). (BC)

Then (∗) gives
dF = gds+ σF2dWs,

which can be written in stochastic-integral form as

F (T,XT ) = F (t,Xt) +

∫ T

t

g(s,Xs)ds+

∫ T

t

σ(s,Xs)F2(s,Xs)dWs.

The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that Xt = x, writing Et,x
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for expectation with value x and starting-time t, and the price at expiry T
as h(XT ) as before, taking Et,x gives

Et,xh(XT ) = F (t, x) + Et,x

∫ T

t

g(s,Xs)ds.

This gives:

Theorem (Feynman-Kac Formula). The solution F = F (t, x) to the
PDE

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2(t, x)F22(t, x) = g(t, x) (PDE)

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = Et,xh(XT )− Et,x

∫ T

t

g(s,Xs)ds, (FK)

where X satisfies the SDE

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ) (SDE)

with initial condition Xt = x.

Now replace µ(t, x) by rx, σ(t, x) by σx, g by rF in the Feynman-Kac
formula above. The SDE becomes

dXs = rXsds+ σXsdWs (∗∗)

– the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of µ (which disappeared in the Black-Scholes
result). The PDE becomes

F1 + rxF2 +
1

2
σ2x2F22 = rF, (BS)

the Black-Scholes PDE. So by the Feynman-Kac formula,

dF = rFds+ σF2dWs, F (T, s) = h(s).

We can eliminate the first term on the right by discounting at rate r: write
G(s,Xs) := e−rsF (s,Xs) for the discounted price process. Then as before,

dG = −re−rsFds+ e−rsdF = e−rs(dF − rFds) = e−rs.σF2dW.
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Then integrating, G is a stochastic integral, so a martingale: the discounted
price process G(s,Xs) = e−rsF (s,Xs) is a martingale, under the measure P ∗

giving the dynamics in (∗∗). This is the measure P we started with, except
that µ has been changed to r. Thus, G has constant P ∗-expectation:

E∗
t,xG(t,Xt) = E∗

t,xe
−rtF (t,Xt) = e−rtF (t, x) = E∗

T,xe
−rTF (T,XT ) = e−rTh(XT ).

This gives the following result:

Theorem (Risk-Neutral Valuation Formula). The no-arbitrage price
of the claim h(ST ) is given by

F (t, x) = e−r(T−t)E∗
t,xh(ST ),

where St = x is the asset price at time t and P ∗ is the measure under which
the asset price dynamics are given by

dSt = rStdt+ σStdWt.

Corollary. In the Black-Scholes model above, the arbitrage-free price does
not depend on the mean return rate µ of the underlying asset.

Comments.
1. Risk-neutral measure. We call P ∗ the risk-neutral probability measure. It
is equivalent to P (by Girsanov’s Theorem – the change-of-measure result,
which deals with change of drift in SDEs – see §4), and is a martingale mea-
sure (as the discounted asset prices are P ∗-martingales, by above), i.e. P ∗

(or Q) is the equivalent martingale measure (EMM).
2. Fundamental Theorem of Asset Pricing. The above continuous-time re-
sult may be summarised just as the Fundamental Theorem of Asset Pricing
in discrete time: to get the no-arbitrage price of a contingent claim, take the
discounted expected value under the equivalent mg (risk-neutral) measure.
3. Completeness. In discrete time, we saw that absence of arbitrage corre-
sponded to existence of risk-neutral measures, completeness to uniqueness.
We have obtained existence and uniqueness here (and so completeness), by
appealing to existence and uniqueness theorems for PDEs (which we have
not proved!). A more probabilistic route is to use Girsanov’s Theorem (§4)
instead. Completeness questions then become questions on representation
theorems for Brownian martingales (§4). As usual, there is a choice of routes
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to the major results – in this case, a trade-off between analysis (PDEs) and
probability (Girsanov’s Theorem and the Representation Theorem for Brow-
nian Martingales, §4 below).

Now the process specified under P ∗ by the dynamics (∗∗) is our old friend
geometric Brownian motion, GBM(r, σ). Thus if St has P

∗-dynamics

dSt = rStdt+ σStdWt, St = s,

with W a P ∗-Brownian motion, then we can write ST explicitly as

ST = s exp{(r − 1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)

∫ ∞

−∞
h(s exp{(r − 1

2
σ2)(T − t) + σ(T − t)

1
2x}).e

− 1
2
x2

√
2π

dx.

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

h(s) = (s−K)+.

Then

F (t, x) = e−r(T−t)

∫ ∞

−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t)+σ(T − t)

1
2x}−K]+dx.

We have already evaluated integrals of this type in Chapter IV, where we
obtained the Black-Scholes formula from the binomial model by a passage to
the limit. Completing the square in the exponential as before gives the

Continuous Black-Scholes Formula.

F (t, s) = sΦ(d+)−e−r(T−t)KΦ(d−), d± := [log(s/K)+(r±1

2
σ2)(T−t)]/σ

√
T − t.
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§4. Girsanov’s Theorem

As above: by the Risk-Neutral Valuation Formula, to calculate option
prices one
(i) discounts everything;
(ii) takes conditional expectations under the equivalent martingale measure
(EMM), or risk-neutral measure – the measure (P ∗ or Q) equivalent to P
under which discounted asset prices become martingales. This is a change of
measure, and mathematically it has the effect of replacing the return rate µ
on the risky stock by the riskless return rate r. We derived it by the histor-
ical route: the Black-Scholes PDE (§2) and the Feynman-Kac formula (§3).
One can replace these two results by one, and avoid the analytical detour via
PDEs, by using instead the next result – Girsanov’s theorem.

Consider first ([KS], §3.5) independentN(0, 1) random variables Z1, · · · , Zn

on (Ω,F ,P). Given a vector µ = (µ1, · · · , µn), consider a new probability
measure P̃ on (Ω,F) defined by

P̃ (dω) = exp{Σn
1µiZi(ω)−

1

2
Σn

1µ
2
i }.P (dω).

This is a positive measure as exp{.} > 0, and integrates to 1 as
∫
exp{µiZi}dP =

exp{1
2
µ2
i }, so is a probability measure. It is also equivalent to P (has the

same null sets – actually, the only null set are Lebesgue-null sets, in each
case), again as the exponential term is positive. Also

P̃ (Zi ∈ dzi, i = 1, · · · , n) = exp{Σn
1µizi −

1

2
Σn

1µ
2
i }.P (Zi ∈ dzi, i = 1, · · · , n)

= (2π)−
1
2
n exp{Σµizi −

1

2
Σµ2

i −
1

2
Σz2i }Πdzi

= (2π)−
1
2
n exp{−1

2
Σ(zi − µi)

2}dz1 · · · dzn.

This says that if the Zi are independent N(0, 1) under P , they are indepen-
dent N(µi, 1) under P̃ . Thus the effect of the change of measure P → P̃ ,
from the original measure P to the equivalent measure P̃ , is to change the
mean, from 0 = (0, · · · , 0) to µ = (µ1, · · · , µn).

This result extends to infinitely many dimensions – i.e., from random vec-
tors to stochastic processes, indeed with random rather than deterministic
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means. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov’s Theorem). Let (µt : 0 ≤ t ≤ T ) be an adapted

(e.g., left-continuous) process with
∫ T

0
µ2
tdt < ∞ a.s., and such that the

process (Lt : 0 ≤ t ≤ T ) defined by

Lt = exp{−
∫ t

0

µsdWs −
1

2

∫ t

0

µ2
sds}

is a martingale. Then, under the probability PL with density LT relative to
P , the process W ∗ defined by

W ∗
t := Wt +

∫ t

0

µsds, (0 ≤ t ≤ T )

is a standard Brownian motion.

Here, Lt is the Radon-Nikodym derivative of PL w.r.t. P on the σ-algebra
Ft. In particular, for µt ≡ µ, change of measure by introducing the RN
derivative exp{µWt − 1

2
µ2} corresponds to a change of drift from 0 to µ.

Girsanov’s Theorem (or the Cameron-Martin-Girsanov Theorem) is for-
mulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].

Consider now the Black-Scholes model, with dynamics

dBt = rBtdt, dSt = µStdt+ σStdWt.

The discounted asset prices S̃t := e−rtSt have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt = −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt.

Now the drift – dt – term here prevents S̃t being a martingale; the noise –
dWt – term gives a stochastic integral, which is a martingale. Girsanov’s
theorem suggests the change of measure from P to the EMM (or risk-neutral
measure) P ∗ making the discounted asset price a martingale. This
(i) gives directly the continuous-time version of the Fundamental Theorem
of Asset Pricing: to price assets, take expectations of discounted prices under
the risk-neutral measure (see below for completeness and uniqueness of EMM
and prices);
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(ii) allows a probabilistic treatment of the Black-Scholes model, avoiding the
detour via PDEs of §2, §3.

Theorem (Representation Theorem for Brownian Martingales). Let
(Mt : 0 ≤ t ≤ T ) be a square-integrable martingale with respect to the
Brownian filtration (Ft). Then there exists an adapted process H = (Ht :
0 ≤ t ≤ T ) with E

∫
H2

sds < ∞ such that

Mt = M0 +

∫ t

0

HsdWs, 0 ≤ t ≤ T.

That is, all Brownian martingales may be represented as stochastic integrals
with respect to Brownian motion.

We refer to, e.g., [KS], [RY] for proof. The multidimensional version of
the result also holds, and may be proved in the same way.

The economic relevance of the Representation Theorem is that it shows
(see e.g. [KS, I.6]) that the Black-Scholes model is complete – that is, that
equivalent martingale measures are unique, and so that Black-Scholes prices
are unique. Mathematically, the result is purely a consequence of properties
of the Brownian filtration. The desirable mathematical properties of Brown-
ian motion are thus seen to have hidden within them desirable economic and
financial consequences of real practical value.

To summarise the basic case (µ and σ constant) in a nutshell:
(i). Dynamics are given by GBM , dSt = µSdt+ σSdWt.
(ii). Discount: dS̃t = (µ− r)S̃dt+ σS̃dWt.
(iii). Use Girsanov’s Theorem to change µ to r: under P ∗, dS̃t = σS̃dWt.
(iv). Integrate: the RHS gives a P ∗-martingale, so has constantE∗-expectation.
Comments.
1. Calculation. When solutions have to be found numerically (as is the case
in general - though not for some important special cases such as European
call options, considered below), we again have a choice of
(i) analytic methods: numerical solution of a PDE,
(ii) probabilistic methods: evaluation, by the Risk-Neutral Valuation For-
mula, of an expectation.
A comparison of convenience between these two methods depends on one’s
experience of numerical computation and the software available. However, in
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the simplest case considered here, the probabilistic problem involves a one-
dimensional integral, while the analytic problem is two-dimensional (involves
a two-variable PDE: one variable would give an ODE!). So on dimensional
grounds, and because of the probabilistic content of this course, we will gen-
erally prefer the probabilistic approach.
2. The Feynman-Kac formula. It is interesting to note that the Feynman-
Kac formula originates in an entirely different context, namely quantum
physics. In the late 1940s, the physicist Richard Feynman developed his
path-integral approach to quantum mechanics, leading to his work (with
Schwinger, Tomonaga and Dyson) on QED (quantum electrodynamics). Feyn-
man’s approach was non-rigorous; Mark Kac, an analyst and probabilist with
an excellent background in PDE, produced a rigorous version which led to
the approach above.
3. The Sharpe ratio. There is no point in investing in a risky asset with
mean return rate µ, when cash is a riskless asset with return rate r, unless
µ > r. The excess return µ − r is compared with the risk, as measured by
the volatility σ via the Sharpe ratio

λ := (µ− r)/σ,

also known as the market price of risk.
4. The Greeks and delta-hedging. This is much as in discrete time (Ch. IV).
5. Discrete and continuous time. One often has a choice between discrete
and continuous time. For discrete time, we have proved everything; for con-
tinuous time, we have had to quote the hard proofs. Note that in continuous
time we can use calculus – PDEs, SDEs etc. In discrete time we use instead
the calculus of finite differences.
6. The calculus of finite differences. This is very similar to ordinary calculus
(old-fashioned name: the infinitesimal calculus – thus the opposite of finite
here is infinitesimal, not infinite!). It is in some ways harder. For instance:
you all know integration by parts (partial integration) backwards. The dis-
crete analogue – partial summation, or Abel’s lemma – may be less familiar.

The calculus of finite differences used to be taught for use in e.g. inter-
polation (how to use information in mathematical tables to ‘fill in missing
values’). This is now done by computer subroutines – but, computers work
discretely (with differences rather than derivatives), so the subject is still
alive and well.

10



§5. Infinite time-horizon; Real options (Investment options)

We sketch here the theory of the American option (one can exercise at
any time), over an infinite time-horizon. We deal first with a put option (see
Week 11 under Real options for the corresponding ‘call option’) – giving the
right to sell at the strike price K, at any time τ of our choosing. This τ
has to be a stopping time: we have to take the decision whether or not to
stop at τ based on information already available (that is, contained in Fτ –
no access to the future, no insider trading). As above, we pass to the risk-
neutral measure.

Under the risk-neutral measure, the SDE for GBM becomes

dXt = rXtdt+ σXtdBt. (GBMr)

To evaluate the option, we have to solve the optimal stopping problem

V (x) := sup
τ

Ex[e
−rτ (K −Xτ )

+]

where the supremum is taken over all stopping times τ and X0 = x under
Px.

The process X satisfying (GBMr) is specified by a second-order linear
differential operator, called its (infinitesimal) generator,

LX := rxD +
1

2
σ2x2D2, D := ∂/∂x.

Now the closer X gets to 0, the less likely we are to gain by continuing. This
suggests that our best strategy is to stop when X gets too small: to stop at
τ = τb, where

τb := inf{t ≥ 0 : Xt ≤ b},

for some b ∈ (0, K). This gives the following free boundary problem for the
unknown value function V (x) and the unknown point b:

LXV = rV for x > b; (i)

V (x) = (K − x)+ for x = b; (ii)

V ′(x) = −1 for x = b (smooth fit); (iii)

V (x) > (K − x)+ for x > b; (iv)
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V (x) = (K − x)+ for 0 < x < b. (v)

Writing d := σ2/2 (‘d for diffusion’), (i) is

dx2V ′′ + rxV ′ − rV = 0. (i∗)

Trial solution:
V (x) = xp.

Substituting gives a quadratic for p:

p2 − (1− r

d
)p− r

d
= 0.

One root is p = 1; the other is p = −r/d. So the general solution (GS) to
the DE (i∗) is

V (x) = C1x+ C2x
−r/d,

for some constants C1 and C2. But V (x) ≤ K for all x ≥ 0 (an option giving
the right to sell at price K cannot be worth more than K!), so C1 = 0. This
gives

C2 =
d

r

( K

1 + d/r

)1+r/d

, b =
K

1 + d/r
.

So

V (x) =
d

r

( K

1 + d/r

)1+r/d

x−r/d if x ∈ [b,∞)

= K − x if x ∈ (0, b].

This is in fact the full and correct solution to the problem. For details, see
[P&S], §25.1.

The ‘smooth fit’ in (iii) is characteristic of free boundary problems. For
a heuristic analogy: imagine trying to determine the shape of a rope, tied
to the ground on one side of a convex body, stretched over the body, then
pulled tight and tied to the ground on the other side. We can see on physical
grounds that the rope will be:
straight to the left of the convex body;
continuously in contact with the body for a while, then
straight to the right of the body, and
there should be no kink in the rope at the points where it makes and then
leaves contact with the body.
This ‘no kink’ condition corresponds to ‘smooth fit’ in (iii).
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