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Kolmogorov’s approach: conditional expectations via σ-fields

The problem with the approach above (Week 3: discrete and density
cases) is that joint densities need not exist – do not exist, in general. One
of the great contributions of Kolmogorov’s classic book of 1933 was the re-
alization that measure theory – specifically, the Radon-Nikodym theorem
–provides a way to treat conditioning in general, without assuming that we
are in the discrete case or density case above.

Recall that the probability triple is (Ω,F , P ). Suppose that B is a sub-σ-
field of F , B ⊂ F (recall that a σ-field represents information; the big σ-field
F represents ‘knowing everything’, the small σ-field B represents ‘knowing
something’).

Suppose that Y is a non-negative random variable whose expectation
exists: E[Y ] < ∞. The set-function

Q(B) :=
∫
B
Y dP (B ∈ B)

is non-negative (because Y is), σ-additive – because∫
B
Y dP =

∑
n

∫
Bn

Y dP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra B, so is a measure
on B. If P (B) = 0, then Q(B) = 0 also (the integral of anything over a
null set is zero), so Q << P . By the Radon-Nikodym theorem (II.4), there
exists a Radon-Nikodym derivative of Q with respect to P on B, which is
B-measurable [in the Radon-Nikodym theorem as stated in II.4, we had F in
place of B, and got a random variable, i.e. an F -measurable function. Here,
we just replace F by B.] Following Kolmogorov (1933), we call this Radon-
Nikodym derivative the conditional expectation of Y given (or conditional on)
B, E[Y |B]: this is B-measurable, integrable, and satisfies∫

B
Y dP =

∫
B
E[Y |B]dP ∀B ∈ B. (∗)

In the general case, where Y is a random variable whose expectation exists
(E[|Y |] < ∞) but which can take values of both signs, decompose Y as

Y = Y+ − Y−
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and define E(Y |B) by linearity as

E[Y |B] := E[Y+|B]− E[Y−|B].

Suppose now that B is the σ-field generated by a random variable X:
B = σ(X) (so B represents the information contained in X, or what we
know when we know X). Then E[Y |B] = E[Y |σ(X)], which is written more
simply as E[Y |X]. Its defining property is∫

B
Y dP =

∫
B
E[Y |X]dP ∀B ∈ σ(X).

Similarly, if B = σ(X1, · · · , Xn) (B is the information in (X1, · · · , Xn)) we
write E[Y |σ(X1, · · · , Xn)] as E[Y |X1, · · · , Xn]:∫

B
Y dP =

∫
B
E[Y |X1, · · · , Xn]dP ∀B ∈ σ(X1, · · · , Xn).

Note. 1. To check that something is a conditional expectation: we have to
check that it integrates the right way over the right sets [i.e., as in (*)].
2. From (*): if two things integrate the same way over all sets B ∈ B, they
have the same conditional expectation given B.
3. For notational convenience, we use E[Y |B] and EBY interchangeably.
4. The conditional expectation thus defined coincides with any we may have
already encountered – in regression or multivariate analysis, for example.
However, this may not be immediately obvious. The conditional expectation
defined above – via σ-fields and the Radon-Nikodym theorem – is rightly
called by Williams ([W], p.84) ‘the central definition of modern probability’.
It may take a little getting used to. As with all important but non-obvious
definitions, it proves its worth in action: see II.6 below for properties of con-
ditional expectations, and Chapter III for stochastic processes, particularly
martingales [defined in terms of conditional expectations].

§6. Properties of Conditional Expectations.

1. B = {∅,Ω}. Here B is the smallest possible σ-field (any σ-field of subsets
of Ω contains ∅ and Ω), and represents ‘knowing nothing’.

E[Y |{∅,Ω}] = E[Y ].

Proof. We have to check (*) of §5 for B = ∅ and B = Ω. For B = ∅ both
sides are zero; for B = Ω both sides are EY . //
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2. B = F . Here B is the largest possible σ-field: ‘knowing everything’.

E[Y |F ] = Y P − a.s.

Proof. We have to check (*) for all sets B ∈ F . The only integrand that
integrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.
Note. When we condition on F (‘knowing everything’), we know Y (because
we know everything). There is thus no uncertainty left in Y to average out,
so taking the conditional expectation (averaging out remaining randomness)
has no effect, and leaves Y unaltered.

3. If Y is B-measurable, E[Y |B] = Y P − a.s.
Proof. Recall that Y is always F -measurable (this is the definition of Y being
a random variable). For B ⊂ F , Y may not be B-measurable, but if it is,
the proof above applies with B in place of F .
Note. If Y is B-measurable, when we are given B (that is, when we condition
on it), we know Y . That makes Y effectively a constant, and when we take
the expectation of a constant, we get the same constant.

4. If Y is B-measurable, E[Y Z|B] = Y E[Z|B] P − a.s.
We refer for the proof of this to [W], p.90, proof of (j).
Note. Williams calls this property ‘taking out what is known’. To remem-
ber it: if Y is B-measurable, then given B we know Y , so Y is effectively a
constant, so can be taken out through the integration signs in (*), which is
what we have to check (with Y Z in place of Y ).

5. If C ⊂ B, E[E(Y |B)|C] = E[Y |C] a.s.
Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫

C
EC[EBY ]dP =

∫
C
EBY dP (definition of EC as C ∈ C)

=
∫
C
Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). //
5’. If C ⊂ B, E[E(Y |C)|B] = E[Y |C] a.s.
Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
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effect on it, by 3.
Note. 5, 5’ are the two forms of the iterated conditional expectations property.
When conditioning on two σ-fields, one larger (finer), one smaller (coarser),
the coarser rubs out the effect of the finer, either way round. This may
be thought of as the coarse-averaging property: we shall use this term in-
terchangeably with the iterated conditional expectations property (Williams
[W] uses the term tower property).

6. Conditional Mean Formula. E[E(Y |B)] = EY P − a.s.
Proof. Take C = {∅,Ω} in 5 and use 1. //
Example. Check this for the bivariate normal distribution considered above.

7. Role of independence. If Y is independent of B,

E[Y |B] = E[Y ] a.s.

Proof. See [W], p.88, 90, property (k).
Note. In the elementary definition P (A|B) := P (A∩B)/P (B) (if P (B) > 0),
if A and B are independent (that is, if P (A ∩ B) = P (A).P (B)), then
P (A|B) = P (A): conditioning on something independent has no effect. One
would expect this familiar and elementary fact to hold in this more general
situation also. It does – and the proof of this rests on the proof above.

Projections.
In Property 5 (tower property), take B = C:

E[E[X|C]|C] = E[X|C].

This says that the operation of taking conditional expectation given a sub-σ-
field C is idempotent – doing it twice is the same as doing it once. Also, tak-
ing conditional expectation is a linear operation (it is defined via an integral,
and integration is linear). Recall from Linear Algebra that we have met such
idempotent linear operations before. They are the projections. (Example:
(x, y, z) 7→ (x, y, 0) projects from 3-dimensional space onto the (x, y)-plane.)
This view of conditional expectation as projection is useful and powerful; see
e.g. Neveu [N], [BK], [BF]. It is particularly useful when one has not yet got
used to conditional expectation defined measure-theoretically as above, as it
gives us an alternative (and perhaps more familiar) way to think.
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Chapter III. STOCHASTIC PROCESSES IN DISCRETE TIME.

§1. Filtrations.

The Kolmogorov triples (Ω,F , P ), and the Kolmogorov conditional ex-
pectations E[X|B], give us all the machinery we need to handle static situ-
ations involving randomness. To handle dynamic situations, involving ran-
domness which unfolds with time, we need further structure.

We may take the initial, or starting, time as t = 0. Time may evolve
discretely, or continuously. We postpone the continuous case to Ch. V; in
the discrete case, we may suppose time evolves in integer steps, t = 0, 1, 2, · · ·
(say, stock-market quotations daily, or tick data by the second). There may
be a final time T , or time horizon, or we may have an infinite time horizon
(in the context of option pricing, the time horizon T is the expiry time).

We wish to model a situation involving randomness unfolding with time.
We suppose, for simplicity, that information is never lost (or forgotten): thus,
as time increases we learn more. Recall that σ-fields represent information
or knowledge. We thus need a sequence of σ-fields {Fn : n = 0, 1, 2, · · ·},
which are increasing:

Fn ⊂ Fn+1 (n = 0, 1, 2, · · ·),

with Fn representing the information, or knowledge, available to us at time
n. We shall always suppose all σ-fields to be complete (this can be avoided,
and is not always appropriate, but it simplifies matters and suffices for our
purposes). Thus F0 represents the initial information (if there is none, F0 =
{∅,Ω}, the trivial σ-field). On the other hand,

F∞ := limn→∞Fn

represents all we ever will know (the ‘Doomsday σ-field’). Often, F∞ will be
F (the σ-field from Ch. II, representing ‘knowing everything’. But this will
not always be so; see e.g. [W], §15.8 for an interesting example.

Such a family {Fn : n = 0, 1, 2, · · ·} is called a filtration; a probabil-
ity space endowed with such a filtration, {Ω, {Fn},F , P} is called a filtered
probability space. (These definitions are due to P. A. MEYER of Strasbourg;
Meyer and the Strasbourg (and more generally, French) school of probabilists
have been responsible for the ‘general theory of [stochastic] processes’, and
for much of the progress in stochastic integration, since the 1960s.) Since
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the filtration is so basic to the definition of a stochastic process, the more
modern term for a filtered probability space is a stochastic basis.

§2. Discrete-Parameter Stochastic Processes.

A stochastic process X = {Xt : t ∈ I} is a family of random variables,
defined on some common probability space, indexed by an index-set I. Usu-
ally (always in this course), I represents time (sometimes I represents space,
and one calls X a spatial process). Here, I = {0, 1, 2, · · · , T} (finite horizon)
or I = {0, 1, 2, · · ·} (infinite horizon).

The (stochastic) process X = (Xn)
∞
n=0 is said to be adapted to the filtra-

tion (Fn)
∞
n=0 if

Xn is Fn −measurable.

So if X is adapted, we will know the value of Xn at time n. If

Fn = σ(X0, X1, · · · , Xn)

we call (Fn) the natural filtration of X. Thus a process is always adapted to
its natural filtration. A typical situation is that

Fn = σ(W0,W1, · · · ,Wn)

is the natural filtration of some process W = (Wn). Then X is adapted to
(Fn), i.e. each Xn is Fn- (or σ(W0, · · · ,Wn)-) measurable, iff

Xn = fn(W0,W1, · · · ,Wn)

for some measurable function fn (non-random) of n+ 1 variables.
Notation.

For a random variable X on (Ω,F , P ), X(ω) is the value X takes on ω
(ω represents the randomness). Often, to simplify notation, ω is suppressed
- e.g., we may write EX :=

∫
ΩXdP instead of EX :=

∫
ΩX(ω)dP (ω).

For a stochastic process X = (Xn), it is convenient (e.g., if using suffices,
ni say) to use Xn, X(n) interchangeably, and we shall feel free to do this.
With ω displayed, these become Xn(ω), X(n, ω), etc.
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§3. Discrete-Parameter Martingales.

We summarise what we need; for details, see [W], or e.g. [N]
Definition.

A process X = (Xn) is called a martingale (mg for short) relative to
((Fn), P ) if
(i) X is adapted (to (Fn)),
(ii) E[|Xn|] < ∞ for all n,
(iii) E[Xn|Fn−1] = Xn−1 P − a.s. (n ≥ 1);
X is a supermartingale if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Thus: a mg is ‘constant on average’, and models a fair game;
a supermg is ‘decreasing on average’, and models an unfavourable game;
a submg is ‘increasing on average’, and models a favourable game.
Note. 1. Martingales have many connections with harmonic functions in
probabilistic potential theory. The terminology in the inequalities above
comes from this: supermartingales correspond to superharmonic functions,
submartingales to subharmonic functions.
2. X is a submg [supermg] iff −X is a supermg [submg]; X is a mg iff it is
both a submg and a supermg.
3. (Xn) is a mg iff (Xn −X0) is a mg. So we may without loss of generality
take X0 = 0 when convenient.
4. If X is a mg, then for m < n

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] (iterated conditional expectations)

= E[Xn−1|Fm] a.s. (martingale property)

= · · · = E[Xm|Fm] a.s. (induction on n),

= Xm (Xm is Fm-measurable)

and similarly for submartingales, supermartingales.
5. Examples of a mg include: sums of independent, integrable zero-mean
random variables [submg: positive mean; supermg: negative mean].
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From the OED: martingale (etymology unknown)
1. 1589. An article of harness, to control a horse’s head.
2. Naut. A rope for guying down the jib-boom to the dolphin-striker.
3. A system of gambling which consists in doubling the stake when losing in
order to recoup oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’
Problem. Analyse this strategy.

Gambling games have been studied since time immemorial - indeed, the
Pascal-Fermat correspondence of 1654 which started the subject was on a
problem (de Méré’s problem) related to gambling.

The doubling strategy above has been known at least since 1815.
The term ‘mg’ in our sense is due to J. VILLE (1939). Martingales were

studied by Paul LÉVY (1886-1971) from 1934 on [see obituary, Annals of
Probability 1 (1973), 5-6] and by J. L. DOOB (1910-2004) from 1940 on.
The first systematic exposition was Doob’s book [D], Ch. VII.
Example: Accumulating data about a random variable ([W], 96, 166-167).
If ξ ∈ L1(Ω,F , P ), Mn := E[ξ|Fn] (so Mn represents our best estimate of ξ
based on knowledge at time n), then

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1]

= E[ξ|Fn−1] (iterated conditional expectations)

= Mn−1,

so (Mn) is a mg. One has the convergence

Mn → M∞ := E[ξ|F∞] a.s. and in L1;

see II.4 below.

§4. Martingale Convergence.

A supermartingale is ‘decreasing on average’. Recall that a decreasing
sequence [of real numbers] that is bounded below converges (decreases to
its greatest lower bound or infimum). This suggests that a supermartingale
which is bounded below converges a.s. This is so [Doob’s Forward Conver-
gence Theorem: [W], §§11.5, 11.7].
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More is true. Call X L1-bounded if

sup
n

E[|Xn|] < ∞.

Theorem (Doob). An L1-bounded supermartingale is a.s. convergent:
there exists X∞ finite such that

Xn → X∞ (n → ∞) a.s.

In particular, we have

Doob’s Martingale Convergence Theorem [W, §11.5]. An L1-bounded
martingale converges a.s.

We say that
Xn → X∞ in L1

if
E[|Xn −X∞|] → 0 (n → ∞).

For a class of martingales, one gets convergence in L1 as well as almost
surely [= with probability one]. Such martingales are called uniformly inte-
grable (UI) [W], or regular [N], or closed (see below).

The following result is in [N], IV.2, [W], Ch. 14; cf. SP L18-19, SA L6.

Theorem (UI Martingale Convergence Theorem). The following are
equivalent for martingales X = (Xn):
(i) Xn converges in L1,
(ii) Xn is L1-bounded, and its a.s. limit X∞ (which exists, by above) satisfies

Xn = E[X∞|Fn],

(iii) There exists an integrable random variable X with

Xn = E[X|Fn].

The random variable X∞ above serves to ”close” the martingale, by giv-
ingXn a value at ”n = ∞”; then {Xn : n = 1, 2, . . . ,∞} is again a martingale
– which we may accordingly call a closed mg. The terms closed, regular and
UI are used interchangeably here.

9



Notice that all the randomness in a closed mg is in the closing value
X∞ (so, although a stochastic process is an infinite-dimensional object, the
randomness in a closed mg is one-dimensional). As time progresses, more
is revealed, by ”progressive revelation” – as in (choose your metaphor) a
striptease, or the ”Day of Judgement” (when all will be revealed).

As we shall see (Risk-Neutral Valuation Formula): closed mgs are vital
in mathematical finance, and the closing value corresponds to the payoff of
an option.

§5. Martingale Transforms.

Now think of a gambling game, or series of speculative investments, in
discrete time. There is no play at time 0; there are plays at times n = 1, 2, · · ·,
and

∆Xn := Xn −Xn−1

represents our net winnings per unit stake at play n. Thus if Xn is a mar-
tingale, the game is ‘fair on average’.

Call a process C = (Cn)
∞
n=1 previsible (or predictable) if

Cn is Fn−1 −measurable for all n ≥ 1.

Think of Cn as your stake on play n (C0 is not defined, as there is no play at
time 0). Previsibility says that you have to decide how much to stake on play
n based on the history before time n (i.e., up to and including play n − 1).
Your winnings on game n are Cn∆Xn = Cn(Xn − Xn−1). Your total (net)
winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0

1 is empty), and call C •X the martingale transform of
X by C.
Theorem. (i) If C is a bounded non-negative previsible process and X is a
supermartingale, C •X is a supermartingale null at zero.
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(ii) If C is bounded and previsible and X is a martingale, C •X is a martin-
gale null at zero.

Proof. With Y = C •X as above,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]

= CnE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out)

≤ 0

in case (i), as C ≥ 0 and X is a supermartingale,

= 0

in case (ii), as X is a martingale. //

Interpretation. You can’t beat the system!
In the martingale case, previsibility of C means we can’t foresee the future
(which is realistic and fair). So we expect to gain nothing – as we should.
Note. 1. Martingale transforms were introduced and studied by D. L.
BURKHOLDER in 1966 [Ann. Math. Statist. 37, 1494-1504]. For a text-
book account, see e.g. [N], VIII.4.
2. Martingale transforms are the discrete analogues of stochastic integrals.
They dominate the mathematical theory of finance in discrete time, just as
stochastic integrals dominate the theory in continuous time.
3. In mathematical finance, X plays the role of a price process, C plays the
role of our trading strategy, and the mg transform C • X plays the role of
our gains (or losses!) from trading.

Proposition (Martingale Transform Lemma). An adapted sequence of
real integrable random variables (Mn) is a martingale iff for any bounded
previsible sequence (Hn),

E[
n∑

r=1

Hr∆Mr] = 0 (n = 1, 2, · · ·).

Proof. If (Mn) is a martingale,X defined byX0 = 0,Xn =
∑n

1 Hr∆Mr (n ≥
1) is the martingale transform H •M , so is a martingale.
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Conversely, if the condition of the Proposition holds, choose j, and for
any Fj-measurable set A write Hn = 0 for n ̸= j + 1, Hj+1 = IA. Then
(Hn) is previsible, so the condition of the Proposition, E[

∑n
1 Hr∆Mr] = 0,

becomes
E[IA(Mj+1 −Mj)] = 0.

As this holds for every A ∈ Fj, the definition of conditional expectation gives

E[Mj+1|Fj] = Mj.

Since this holds for every j, (Mn) is a martingale. //

§6. Stopping Times and Optional Stopping.

A random variable T taking values in {0, 1, 2, · · · ; +∞} is called a stopping
time (or optional time) if

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn ∀n ≤ ∞.

Equivalently,
{T = n} ∈ Fn n ≤ ∞.

Think of T as a time at which you decide to quit a gambling game: whether
or not you quit at time n depends only on the history up to and including
time n – NOT the future. [Elsewhere, T denotes the expiry time of an option.
If we mean T to be a stopping time, we will say so.]

The following important classical theorem is discussed in [W], 10.10.

Theorem (Doob’s Optional Stopping Theorem, OST). Let T be a
stopping time, X = (Xn) be a supermartingale, and assume that one of the
following holds:
(i) T is bounded [T (ω) ≤ K for some constant K and all ω ∈ Ω];
(ii) X = (Xn) is bounded [|Xn(ω)| ≤ K for some K and all n, ω];
(iii) E[T ] < ∞ and (Xn −Xn−1) is bounded.

Then XT is integrable, and

E[XT ] ≤ E[X0].

If here X is a martingale, then

E[XT ] = E[X0].
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