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Stochastic integration (continued).
One can define stochastic integration in much greater generality.

1. Integrands. The natural class of integrands X to use here is the class of
predictable processes. These include the left-continuous processes to which
we confine ourselves above.
2. Integrators. One can construct a closely analogous theory for stochastic
integrals with the Brownian integrator B above replaced by a continuous
local martingale integrator M (or more generally by a local martingale: see
below). The properties above hold, with D replaced by

E[(

∫ t

0

XudMu)
2] = E

∫ t

0

X2
ud⟨M⟩u.

See e.g. [KS], [RY] for details.
One can generalise further to semimartingale integrators: these are pro-

cesses expressible as the sum of a local martingale and a process of (locally)
finite variation. Now C is replaced by: stochastic integrals of local martin-
gales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and Itô’s Lemma

Suppose that U, V are adapted processes,with U locally integrable (so∫ t

0
Usds is defined as an ordinary integral, as in Ch. II), and V is left-

continuous with
∫ t

0
EV 2

u du < ∞ for all t (so
∫ t

0
VsdBs is defined as a stochastic

integral, as in §5). Then

Xt := x0 +

∫ t

0

Usds+

∫ t

0

VsdBs

defines a stochastic process X with X0 = x0. It is customary, and convenient,
to express such an equation symbolically in differential form, in terms of the
stochastic differential equation

dXt = Utdt+ VtdBt, X0 = x0. (SDE)

Now suppose that f : R2 → R is a function, continuously differentiable
once in its first argument (which will denote time), and twice in its second
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argument (space): f ∈ C1,2. The question arises of giving a meaning to the
stochastic differential df(t,Xt) of the process f(t,Xt), and finding it.

Recall the Taylor expansion of a smooth function of several variables,
f(x0, x1, · · · , xd) say. We use suffices to denote partial derivatives: fi :=
∂f/∂xi, fi,j := ∂2f/∂xi∂xj (recall that if partials not only exist but are
continuous, then the order of partial differentiation can be changed: fi,j =
fj,i, etc. – Clairaut’s theorem). Then for x = (x0, x1, · · · , xd) near u,

f(x) = f(u) + Σd
i=0(xi − ui)fi(u) +

1

2
Σd

i,j=0(xi − ui)(xj − uj)fi,j(u) + · · ·

In our case (writing t0 in place of 0 for the starting time):

f(t,Xt) = f(t0, X(t0))+(t−t0)f1(t0, X(t0))+(X(t)−X(t0))f2+
1

2
(t−t0)

2f11+

(t− t0)(X(t)−X(t0))f12 +
1

2
(X(t)−X(t0))

2f22 + · · · ,

which may be written symbolically as

df(t,X(t)) = f1dt+ f2dX +
1

2
f11(dt)

2 + f12dtdX +
1

2
f22(dX)2 + · · · .

In this, we
(i) substitute dXt = Utdt+ VtdBt from above,
(ii) substitute (dBt)

2 = dt, i.e. |dBt| =
√
dt, from §4:

df = f1dt+f2(Udt+V dB)+
1

2
f11(dt)

2+f12dt(Udt+V dB)+
1

2
f22(Udt+V dB)2+· · ·

Now using (dB)2 = dt,

(Udt+ V dB)2 = V 2dt+ 2UV dtdB + U2(dt)2

= V 2dt+ higher-order terms :

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dB + higher-order terms.

Summarising, we obtain Itô’s Lemma, the analogue for the Itô or stochastic
calculus of the chain rule for ordinary (Newton-Leibniz) calculus:
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Theorem (Itô’s Lemma). If Xt has stochastic differential

dXt = Utdt+ VtdBt, X0 = x0,

and f ∈ C1,2, then f = f(t,Xt) has stochastic differential

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dBt.

That is, writing f0 for f(0, x0), the initial value of f ,

f(t,Xt)) = f0 +

∫ t

0

(f1 + Uf2 +
1

2
V 2f22)dt+

∫ t

0

V f2dB.

This important result may be summarised as follows: use Taylor’s theo-
rem formally, together with the rule

(dt)2 = 0, dtdB = 0, (dB)2 = dt.

Itô’s Lemma extends to higher dimensions, as does the rule above:

df = (f0 + Σd
i=1Uifi +

1

2
Σd

1V
2
i fii)dt+ Σd

1VifidBi

(where Ui, Vi, Bi denote the ith coordinates of vectors U, V,B, fi, fii denote
partials as above); here the formal rule is

(dt)2 = 0, dtdBi = 0, (dBi)
2 = dt, dBidBj = 0 (i ̸= j).

Corollary. Ef(t,Xt) = f0 +
∫ t

0
E[f1 + Uf2 +

1
2
V 2f22]dt.

Proof.
∫ t

0
V f2dB is a stochastic integral, so a martingale, so its expectation

is constant (= 0, as it starts at 0). //

Note. Powerful as it is in the setting above, Itô’s Lemma really comes into
its own in the more general setting of semimartingales. It says there that if
X is a semimartingale and f is a smooth function as above, then f(t,X(t))
is also a semimartingale. The ordinary differential dt gives rise to the finite-
variation part, the stochastic differential gives rise to the martingale part.
This closure property under very general non-linear operations is very pow-
erful and important.

3



Example: The Ornstein-Uhlenbeck Process.
The most important example of a SDE for us is that for geometric Brow-

nian motion (VI.1 below). We close here with another example.
Consider now a model of the velocity Vt of a particle at time t (V0 = v0),

moving through a fluid or gas, which exerts
(i) a frictional drag, assumed propertional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas. The basic model is the SDE

dV = −βV dt+ cdB, (OU)

whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/β and diffusion coefficient D := 1

2
c2/β2. It is a stationary

Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N(0, βD) and
whose limiting correlation function is e−β|.|.

If we integrate the OU velocity process to get the OU displacement pro-
cess, we lose the Markov property (though the process is still Gaussian).
Being non-Markov, the resulting process is much more difficult to analyse.

The OU process is the prototype of processes exhibiting mean reversion,
or a central push: frictional drag acts as a restoring force tending to push the
process back towards its mean. It is important in many areas, including
(i) statistical mechanics, where it originated;
(ii) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates (the mean represents the ‘natural’ interest rate);
(iii) stochastic volatility models, where the volatility σ itself is now a stochas-
tic process σt, subject to an SDE of OU type.
Theory of interest rates.

This subject dominates the mathematics of money market, or bond mar-
kets. These are more important in today’s world than stock markets, but are
more complicated, so we must be brief here. The area is crucially important
in macro-economic policy, and in political decision-making, particularly after
the financial crisis (”credit crunch”). Government policy is driven by fear of
speculators in the bond markets (rather than aimed at inter-governmental
cooperation against them). The mathematics is infinite-dimensional (at each
time-point t we have a whole yield curve over future times), but reduces to
finite-dimensionality: bonds are only offered at discrete times, with a tenor
structure (a finite set of maturity times).
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Mean reversion is used in models, to reflect the underlying ‘natural in-
terest rate’, from which deviations may occur due to short-term pressures
(pre-Crash – these may be longer-lasting nowadays, as we see post-Crash).

Chapter VI. MATHEMATICAL FINANCE IN CONTINUOUS
TIME

§1. Geometric Brownian Motion (GBM)

As before, we write B for standard Brownian motion. We write Bµ,σ for
Brownian motion with drift µ and diffusion coefficient σ: the path-continuous
Gaussian process with independent increments such that

Bµ,σ(s+ t)−Bµ,σ(s) is N(µt, σ2t).

This may be realised as

Bµ,σ(t) = µt+ σB(t).

Consider the process

Xt = f(t, Bt) := x0. exp{(µ− 1

2
σ2)t+ σBt}.

Here, since

f(t, x) = x0. exp{(µ− 1

2
s2)t+ σx},

f1 = (µ− 1

2
σ2)f, f2 = σf, f22 = σ2f.

By Itô’s Lemma (Ch. V: dXt = Utdt + VtdBt and f smooth implies df =
(f1+Uf2+

1
2
V 2f22)dt+V f2dBt) we have (taking U = 0, V = 1, X = B),

dXt = df = [(µ− 1

2
σ2)f +

1

2
σ2f ]dt+ σfdBt :

dXt = µfdt+ σfdBt = µXtdt+ σXtdBt :

X satisfies the SDE
dXt = Xt(µdt+ σdBt), (GBM)

and is called geometric Brownian motion (GBM). We turn to its economic
meaning, and the role of the two parameters µ and σ, below.
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We recall the model of Brownian motion from Ch. V. It was developed
(by Brown, Einstein, Wiener, ...) in statistical mechanics, to model the ir-
regular, random motion of a particle suspended in fluid under the impact of
collisions with the molecules of the fluid.

The situation in economics and finance is analogous. The price of an asset
depends on many factors: a share in a manufacturing company depends on,
say, its own labour costs, and raw material prices for the articles it manu-
factures. Together, these involve, e.g., foreign exchange rates, labour costs –
domestic and foreign, transport costs, etc. – all of which respond to the un-
folding of events – economic data/political events/the weather/technological
change/labour, commercial and environmental legislation/ ... in time. There
is also the effect of individual transactions in the buying and selling of a
traded asset on the asset price. The analogy between the buffeting effect
of molecules on a particle in the statistical mechanics context on the one
hand, and that of this continuous flood of new price-sensitive information on
the other, is highly suggestive. The first person to use Brownian motion to
model price movements in economics was Bachelier in his celebrated thesis
of 1900.

Bachelier’s seminal work was not definitive (indeed, not correct), either
mathematically (it was pre-Wiener) or economically. In particular, Brownian
motion itself is inadequate for modelling prices, as
(i) it attains negative levels, and
(ii) one should think in terms of return, rather than prices themselves.
However, one can allow for both of these by using geometric, rather than
ordinary, Brownian motion as one’s basic model. This has been advocated
in economics from 1965 on by Samuelson1 – and was Itô’s starting-point for
his development of Itô or stochastic calculus in 1944 – and has now become
standard:
SAMUELSON, P. A. (1965): Rational theory of warrant pricing. Industrial
Management Review 6, 13-39,
SAMUELSON, P. A. (1973): Mathematics of speculative prices. SIAM Re-
view 15, 1-42.
Returning now to (GBM), the SDE above for geometric Brownian motion
driven by Brownian noise, we can see how to interpret it. We have a risky as-
set (stock), whose price at time t is Xt; dXt = X(t+dt)−X(t) is the change
in Xt over a small time-interval of length dt beginning at time t; dXt/Xt is

1Paul A. Samuelson (1915-2009), American economist; Nobel Prize in Economics, 1970
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the gain per unit of value in the stock, i.e. the return. This is a sum of two
components:
(i) a deterministic component µdt, equivalent to investing the money risk-
lessly in the bank at interest-rate µ (> 0 in applications), called the under-
lying return rate for the stock,
(ii) a random, or noise, component σdBt, with volatility parameter σ > 0
and driving Brownian motion B, which models the market uncertainty, i.e.
the effect of noise.
Justification. For a treatment of this and other diffusion models via microe-
conomic arguments, see
[FS] FÖLLMER, H. & SCHWEIZER, M. (1993): A microeconomic approach
to diffusion models for stock prices. Mathematical Finance 3, 1-23.
Note. Observe the decomposition of what we are modelling into two com-
ponents: a systematic component and a random component (driving noise).
We have met such decompositions elsewhere – e.g. regression, and the Doob
decomposition.

§2. The Black-Scholes Model

For the purposes of this section only, it is convenient to be able to use the
‘W for Wiener’ notation for Brownian motion/Wiener process, thus liberating
B for the alternative use ‘B for bank [account]’. Thus our driving noise terms
will now involve dWt, our deterministic [bank-account] terms dBt.

We now consider an investor constructing a trading strategy in continuous
time, with the choice of two types of investment:
(i) riskless investment in a bank account paying interest at rate r > 0 (the
short rate of interest): Bt = B0e

rt (t ≥ 0) [we neglect the complications
involved in possible failure of the bank – though banks do fail – witness
Barings 1995, or AIB 2002!];
(ii) risky investment in stock, one unit of which has price modelled as above
by GMB(µ, σ). Here the volatility σ > 0; the restriction 0 < r < µ on the
short rate r for the bank and underlying rate µ for the stock are economically
natural (but not mathematically necessary); the stock dynamics are thus
given by

dSt = St(µdt+ σdWt).

Notation. Later, we shall need to consider several types of risky stock – d
stocks, say. It is convenient, and customary, to use a superscript i to label
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stock type, i = 1, · · · , d; thus S1, · · · , Sd are the risky stock prices. We can
then use a superscript 0 to label the bank account, S0. So with one risky
asset as above, the dynamics are

dS0
t = rS0

t dt,

dS1
t = µS1

t dt+ σS1
t dWt.

We shall focus on pricing at time 0 of options with expiry time T ; thus the
index-set for time t throughout may be taken as [0, T ] rather than [0,∞).

We proceed as in the discrete-time model of IV.1. A trading strategy H
is a vector stochastic process

H = (Ht : 0 ≤ t ≤ T ) = ((H0
t , H

1
t , · · · , Hd

t )) : 0 ≤ t ≤ T )

which is previsible: each H i
t is a previsible process (so, in particular, (Ft−)-

adapted) [we may simplify with little loss of generality by replacing previsi-
bility here by left-continuity of Ht in t]. The vector Ht = (H0

t , H
1
t , · · · , Hd

t )
is the portfolio at time t. If St = (S0

t , S
1
t , · · · , Sd

t ) is the vector of prices at
time t, the value of the portfolio at t is the scalar product

Vt(H) := Ht.St = Σd
i=0H

i
tS

i
t .

The discounted value is

Ṽt(H) = βt(Ht.St) = Ht.S̃t,

where βt := 1/S0
t = e−rt (fixing the scale by taking the initial bank account

as 1, S0
0 = 1), so

S̃t = (1, βtS
1
t , · · · , βtS

d
t )

is the vector of discounted prices.
Recall that

(i) in IV.1 H is a self-financing strategy if ∆Vn(H) = Hn.∆Sn, i.e. Vn(H) is
the martingale transform of S by H,
(ii) stochastic integrals are the continuous analogues of martingale trans-
forms.
We thus define the strategy H to be self-financing, H ∈ SF , if

dVt = Ht.dSt = Σd
0H

i
tdS

i
t .
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The discounted value process is

Ṽt(H) = e−rtVt(H)

and the interest rate is r. So

dṼt(H) = −re−rtdt.Vt(H) + e−rtdVt(H)

(since e−rt has finite variation, this follows from integration by parts,

d(XY )t = XtdYt + YtdXt +
1

2
d⟨X, Y ⟩t

– the quadratic covariation of a finite-variation term with any term is zero)

= −re−rtHt.Stdt+ e−rtHt.dSt

= Ht.(−re−rtStdt+ e−rtdSt)

= Ht.dS̃t

(S̃t = e−rtSt, so dS̃t = −re−rtStdt+ e−rtdSt as above): for H self-financing,

dVt(H) = Ht.dSt, dṼt(H) = Ht.dS̃t,

Vt(H) = V0(H) +

∫ t

0

HsdSs, Ṽt(H) = Ṽ0(H) +

∫ t

0

HsdS̃s.

Now write U i
t := H i

tS
i
t/Vt(H) = H i

tS
i
t/ΣjH

j
t S

j
t for the proportion of the

value of the portfolio held in asset i = 0, 1, · · · , d. Then ΣU i
t = 1, and

Ut = (U0
t , · · · , Ud

t ) is called the relative portfolio. For H self-financing,

dVt = Ht.dSt = ΣH i
tdS

i
t = Vt Σ

H i
tS

i
t

Vt

.
dSi

t

Si
t

: dVt = Vt ΣU
i
tdS

i
t/S

i
t .

Dividing through by Vt, this says that the return dVt/Vt is the weighted
average of the returns dSi

t/S
i
t on the assets, weighted according to their pro-

portions U i
t in the portfolio.

Note. Having set up this notation (that of [HP]) – in order to be able if
we wish to have a basket of assets in our portfolio – we now prefer – for
simplicity – to specialise back to the simplest case, that of one risky asset.
Thus we will now take d = 1 until further notice.
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§3. The (continuous) Black-Scholes formula (BS): derivation via
Girsanov’s Theorem

The Sharpe ratio.
There is no point in investing in a risky asset with mean return rate µ,

when cash is a riskless asset with return rate r, unless µ > r. The excess
return µ − r (the investor’s reward for taking a risk) is compared with the
risk, as measured by the volatility σ, via the Sharpe ratio

θ := (µ− r)/σ,

also known as the market price of risk. This is important, both here (see
below), in CAPM (I.3, L2), and in asset allocation decisions.

Consider now the Black-Scholes model, with dynamics

dBt = rBtdt, dSt = µStdt+ σStdWt.

The discounted asset prices S̃t := e−rtSt have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt = −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt = σS̃t(θdt+ dWt).

We summarise the main steps briefly as (a) - (f) below:
(a) Dynamics are given by GBM , dSt = µSdt+ σSdWt (VI.1).
(b) Discount: dS̃t = (µ− r)S̃dt+ σS̃dWt = σS̃(θdt+ dWt) (above).

We work with the discounted stock price S̃t. We would like this to be
a martingale, as in Ch. IV, where we passed from P -measure to Q- (or
P ∗)-measure, so as to make discounted asset prices martingales. Girsanov’s
theorem (below) accomplishes this, in our new continuous-time setting: it
maps P to P ∗ (or Q), and µ to r. This kills the dt term on the right in (b).
If we then integrate dS̃t = σS̃dWt, we get an Itô integral, so a martingale,
on the right. Assuming this for now:
(c) Use Girsanov’s Theorem to change µ to r, so θ := (µ− r)/σ to 0: under
P ∗, dS̃t = σS̃dWt.
(d) This and dṼt(H) = HtdS̃t (where V is the value process and H the
trading strategy replicating the payoff h – VI.2) give dṼt(H) = Ht.σS̃tdWt.
Integrate: Ṽt is a P ∗-mg, so has constant E∗-expectation.
(e) This gives the Risk-Neutral Valuation Formula (RNVF), as in IV.4.
(f) From RNVF, we can obtain BS, by integration, as in IV.6.
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It remains to state and discuss Girsanov’s theorem. We cannot prove it
in full (only the finite-dimensional approximation below) – this is technical
Measure Theory. But we must expect this in this chapter: in discrete time
(Ch. IV) we could prove everything; here in continuous time, we can’t.

Consider first ([KS], §3.5) independentN(0, 1) random variables Z1, · · · , Zn

on (Ω,F , P ). Given a vector µ = (µ1, · · · , µn), consider a new probability
measure P̃ on (Ω,F) defined by

P̃ (dω) = exp{Σn
1µiZi(ω)−

1

2
Σn

1µ
2
i }.P (dω).

This is a positive measure as exp{.} > 0, and integrates to 1 as
∫
exp{µiZi}dP =

exp{1
2
µ2
i } (normal MGF – Problems 8 Q1), so is a probability measure. It is

also equivalent to P (has the same null sets), again as the exponential term
is positive (the exponential on the right is the Radon-Nikodym derivative
dP̃/dP ). Also

P̃ (Zi ∈ dzi, i = 1, · · · , n) = exp{Σn
1µizi−

1

2
Σn

1µ
2
i }.P (Zi ∈ dzi, i = 1, · · · , n)

(Zi ∈ dzi means zi ≤ Zi ≤ zi + dzi, so here Zi = zi to first order)

= (2π)−
1
2
n exp{Σµizi −

1

2
Σµ2

i −
1

2
Σz2i }Πdzi

= (2π)−
1
2
n exp{−1

2
Σ(zi − µi)

2}dz1 · · · dzn.

This says that if the Zi are independent N(0, 1) under P , they are indepen-
dent N(µi, 1) under P̃ . Thus the effect of the change of measure P 7→ P̃ ,
from the original measure P to the equivalent measure P̃ , is to change the
mean, from 0 = (0, · · · , 0) to µ = (µ1, · · · , µn).

This result extends to infinitely many dimensions – i.e., stochastic pro-
cesses. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov’s Theorem). Let (µt : 0 ≤ t ≤ T ) be an adapted

process with
∫ T

0
µ2
tdt < ∞ a.s. such that the process L with

Lt := exp{
∫ t

0

µsdWs −
1

2

∫ t

0

µ2
sds} (0 ≤ t ≤ T )
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is a martingale. Then, under the probability PL with density LT relative to
P , the process W ∗ defined by

W ∗
t := Wt −

∫ t

0

µsds, (0 ≤ t ≤ T )

is a standard Brownian motion (so W is BM +
∫ t

0
µsds).

Here, Lt is the Radon-Nikodym derivative of PL w.r.t. P on the σ-algebra
Ft. In particular, for µt ≡ µ, change of measure by introducing the RN
derivative exp{µWt − 1

2
µ2} corresponds to a change of drift from 0 to µ.

Exponential martingale.
The martingale condition in Girsanov’s theorem is satisfied in the case

µt ≡ µ is constant. For, write

Mt := exp{µWt −
1

2
µ2t}.

This is a martingale. For, if s < t,

E[Mt|Fs] = E[exp{µ(Ws + (Wt −Ws))−
1

2
µ2(s+ (t− s))}|Fs]

= exp{µWs −
1

2
µ2s}.E[exp{µ(Wt −Ws)−

1

2
µ2(t− s)],

as the conditioning has no effect on the second term, by independent incre-
ments of Brownian motion. The first term on the right is Ms. The second
term is 1. For, if Z ∼ N(0, 1),

E[exp{µZ}] = exp{1
2
µ2}

(normal MGF). Also,

Wt −Ws =
√
t− sZ, Z ∼ N(0, 1)

(properties of BM). Combining, M is a mg, as required. //
So the case µt constant = µ of Girsanov’s theorem passes between BM

and BM + µt. The argument above uses this with µ− r for µ.
Girsanov’s Theorem (or the Cameron-Martin-Girsanov Theorem) is for-

mulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].
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