
MATH482 SOLUTIONS to EXAMINATION, 2013

Q1. (a) Types of risk. Institutions encounter risks of various types. Per-
haps the biggest one starts at the top: how good is the board? If the board
of directors, and particularly the chairman and CEO, do not have a good
overview and good judgement, this alone can bring the institution down. [3]

Other specific types of risk include:
Market risk. This is the risk that one’s current market position (the aggre-
gate of risky assets one holds) goes down in value (things one is long on get
cheaper, and/or things one is short on get dearer). [3]
Credit risk. This is the risk that counter-parties to one’s financial transac-
tions may default on their obligations. When this happens, debts cannot be
(or are not) paid in full. Usually, payment is made in part, by negotiation
between the parties (it may be cheaper to agree a partial repayment than to
force the other party into bankruptcy), or by the administrators or liquida-
tors in the case of companies. [4]
Operational risk. This is risk arising from the internal procedures of an insti-
tution: failure of computer systems for implementing transactions; fraudulent
or unauthorised trading made possible by inadequate supervision; etc. [4]
Liquidity risk. This is the risk that one will be unable to implement a planned
or agreed transaction because of lack of cash-in-hand to trade with, and/or
willingness to trade. The Credit Crunch of 2007/8 on was caused by banks
realising they had piles of toxic debt on their hands (see below), and so did
not know what their balance sheets were worth; that other banks were sim-
ilarly placed; hence that banks no longer trusted themselves or each other,
and so refused to lend to each other. So the financial system froze up; so the
real economy froze up. [4]
Model risk. To handle real-world phenomena of any complexity, one needs to
model them mathematically. To quote Box’s Dictum: All models are wrong;
some models are useful. Use of an inappropriate model to set the prices
at which one buys and sells exposes the institution to open-ended losses, to
competitors with better models. [4]
(b) Stress testing. Financial regulators test the adequacy of the performance
of a financial institution by subjecting it to stress testing: seeing how well its
operations would perform under hypothetical but unfavourable market sce-
narios. This tests various aspects: their models, systems (how management
and trading teams would react under pressure), capital reserves, etc. [3]
[Mainly seen – lectures]
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Q2. (a) Volatility. The Black-Scholes formula involves the parameter σ
(where σ2 is the variance of the stock per unit time), called the volatility of
the stock. In financial terms, this represents how sensitive the stock-price is
to new information - how ‘volatile’ the market’s assessment of the stock is.
This volatility parameter is very important, but we do not know it; instead,
we have to estimate the volatility for ourselves. There are two approaches: [3]
(b) Historic volatility: here we use Time Series methods to estimate σ from
past price data. Clearly the more variability we observe in runs of past prices,
the more volatile the stock price is, and given enough data we can estimate
σ in this way. [4]
Implied volatility: match observed option prices to theoretical option prices.
For, the price we see options traded at tells us what the market thinks the
volatility is (estimating volatility this way works because the dependence is
monotone). [4]
Volatility surface. If the Black-Scholes model were perfect, these two es-
timates would agree (to within sampling error). But discrepancies can be
observed, which shows the imperfections of our model. Volatility graphed
against price S, or strike K, typically shows a volatility smile (or even smirk).
Graphed against S and K in 3 dimensions, we get the volatility surface. [4]
(c) Volatility dependence is given by vega := ∂c/∂σ for calls, ∂p/∂σ for puts.
From the Black-Scholes formula (which gives the price explicitly as a function
of σ), one can check by calculus that ∂c/∂σ > 0, and similarly for puts (or,
use the result for calls and put-call parity). Options like volatility. The more
uncertain things are (the higher the volatility), the more valuable protection
against adversity becomes (the higher the option price). [3]
(d) The classical view of volatility is that it is caused by future uncertainty,
and shows the market’s reaction to the stream of new information. How-
ever, studies taking into account periods when the markets are open and
closed [there are only about 250 trading days in the year] have shown that
the volatility is less when markets are closed than when they are open. This
suggests that trading itself is one of the main causes of volatility. [4]

The introduction of a small transaction tax would have the effect of de-
creasing trading. This would increase market stability: trading is one of
the causes of volatility; options like volatility. So trading tends to cause an
increase in trading in options, and so on. Ultimately this tends to induce
market instability. So conversely, market stability would benefit from a re-
duction in trading volumes caused by a transaction tax. [3]
[Mainly seen – lectures]
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Q3. Discrete and continuous Black-Scholes models and formulae.
(a) In the discrete Black-Scholes (BS) model, we use the (Cox-Ross-Rubinstein,
CRR) binomial treemodel of 1979. At each step, the price can go up or down;
we use a ‘recombining’ tree, so that ‘up’ and ‘down’ paths link. The price
at expiry thus depends on the number of up and down steps, and this has
a binomial distribution. We can calculate the payoff at each terminal node.
The tree has a unique risk-neutral measure, P ∗ say, under which discounted
asset prices become martingales. The price of the option at any time is thus
the P ∗ expectation of the discounted value of the payoff, and we can find
this as a suitable binomial sum. This gives the discrete BS formula. [4]

Now just as the binomial distribution has a histogram approximating a
suitable normal density, the binomial sum in the discrete BS formula also
has a limit, given by two terms, both involving Φ, one involving the stock
price S, the other the strike price K. This limit of the discrete BS formula
is the (continuous) Black-Scholes formula of 1973. [4]

Not only does the formula have a limit, as above, the model has a limit.
Brownian motion is a suitable limit of random walks. So we can treat the
continuous BS formula directly via BM (as Black and Scholes did in 1973),
or indirectly via the CRR tree of 1979. [3]
(b) When we pass from the real probability measure P to the risk-neutral
probability measure (or equivalent martingale measure, EMM) P ∗, the mean
return µ on the stock is lost, and replaced by the riskless return rate r. What
survives is the relevant variance, or rather its square root, the volatility, σ.
So: both discrete and continuous BS formulae involve σ but not µ. [4]
(c) For an American put, we have at each node of the tree the option of
exercising early. We calculate both the option value and the optimal exercise
strategy by working backwards through the tree:
1. Draw the tree, and fill in the stock price at each node.
2. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs (fN,j = max[K − SujdN−j, 0]) at the terminal nodes.
3. Go back one time-step. Fill in the ‘European’ value at the penultimate
nodes as the discounted values of the upper and lower right (terminal) values,
under P ∗ - ‘p∗ × lower right plus 1− p∗ × upper right’. Fill in the ‘intrinsic’
(or early-exercise) value. The American put value is the higher of these.
4. Iterate, working back down the tree to the root. The value of the American
put at time 0 is the value at the root. The nodes split into the ‘early-exercise
region’ and the ‘continuation region’. [10]
[Seen, lectures]
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Q4. Martingale transforms; stochastic integrals; trading and gains from
trade.
(a) Call a process C = (Cn)

∞
n=1 previsible (or predictable) if

Cn is Fn−1 −measurable for all n ≥ 1. [2]

(b) Think of Cn as your stake on play n (C0 is not defined, as there is no
play at time 0). Previsibility says that you have to decide how much to stake
on play n based on the history before time n (i.e., up to and including play
n− 1). Your winnings on game n are Cn∆Xn = Cn(Xn −Xn−1). Your total
(net) winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0

1 is empty), and call C •X the martingale transform of
X by C. [4]

(c) Theorem. (i) If C is bounded and previsible and X is a martingale,
C •X is a martingale null at zero.

Proof. With Y = C •X as above,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]

= CnE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out),

= 0, (as X is a martingale). [10]

(d) In mathematical finance, X plays the role of a price process, C plays
the role of our trading strategy, and the mg transform C •X plays the role
of our gains (or losses!) from trading. The previsibility of C corresponds to
no insider trading: one has to decide on one’s current trades in the light of
current information, not future information. [4]
(e) Similarly in continuous time, where C •X becomes the stochastic integral∫ t
0 C(s)dX(s). Previsibility here means C(t) ∈ Ft− :=

∪
s<t Fs: one has to

decide on one’s current trades at time t ”just before” t – in ignorance of any
new price-sensitive information at t. [5]
[Seen – lectures]
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Q5. Geometric Brownian Motion (GBM). (a) Consider the Black-Scholes
model, with dynamics given by the stochastic differential equation (SDE)

dBt = rBtdt, dSt = µStdt+ σStdWt. (GBM)

The interpretation here is that Bt is our bank account at time t – money
invested risklessly at rate r, so growing exponentially. The risky stock S has
a similar term, this time with growth-rate µ (which models the systematic
part of the price dynamics), plus a second term which models the risky
part. The uncertainty in the economic and financial climate is represented
by the Brownian motion (BM) W = (Wt); this is coupled to the stock-price
dynamics via the paramater σ, the volatility, which measures how sensitive
this particular risky stock is to changes in the overall economic climate. [7]
(b) Discounting the prices by ert, the discounted asset prices S̃t := e−rtSt

have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt

= −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt.

Thus discounting changes the rate µ on the RHS of (GBM) to µ− r. [7]
(c) Now use Girsanov’s Theorem to change from the real probability measure
P to an equivalent probability measure P ∗ under which the µdt in (GBM)
is rdt. Then under P ∗, the stock-price dynamics become

dS̃t = σS̃tdWt (under P ∗).

Integrating, S̃ on the left is a stochastic integral w.r.t. Brownian motion –
which is a martingale. This P ∗ is the equivalent martingale measure (EMM),
or risk-neutral measure. The EMM is that in the continuous-time version of
the Fundamental Theorem of Asset Pricing: to price assets, take expectations
of discounted prices under the risk-neutral measure. This leads to the Black-
Scholes formula by direct probabilistic means, rather than via the Black-
Scholes PDE. [7]
(d) In the Black-Scholes model, markets are complete. So the EMM is unique.
This is a result of the representation theorem for Brownian martingales: any
Brownian martingale can be represented as a stochastic integral w.r.t. BM.
Completeness results from the continuity of the paths of BM. [4]
[Mainly seen – lectures]

5



Q6. Real options. (a) With starting value x, to solve the optimal stopping
problem

V (x) := max
τ

E[(Xτ − I)e−rτ ]

(discounting as usual). This gives the best discounted profit, buying an asset
of value X for a cost I, at time τ chosen optimally. [4]
(b) If µ ≤ 0, the (mean) value of the project will decrease. So we invest
immediately if x > I (with immediate profit x − I > 0), and do not invest
otherwise. If µ > r, the (mean) growth will swamp the riskless interest rate,
so the investment is worthwhile, and we should again invest immediately as
there is no point in waiting. If µ = r, there is no point in taking the risk of
investing, so we should not invest. [4]
(c) There remains the case 0 < µ < r. Using the infinitesimal generator, one
gets the differential equation (Bellman equation)

1

2
σ2x2V ′′(x) + µxV ′(x)− rV (x) = 0,

with V (0) = 0 (we get nothing from something worth nothing). A suitable
trial solution is V (x) = Cxp. This leads to a quadratic equation in p:

Q(p) :=
1

2
σ2p(p− 1) + µp− r = 0. [6]

The product of the roots is negative, and Q(0) = −r < 0, Q(1) = µ− r < 0.
So one root p1 > 1 and the other p2 < 0.
(d) The general solution is V (x) = C1x

p1 +C2x
p2 , but from V (0) = 0 we get

C2 = 0, so V (x) = C1x
p1 , or V (x) = Cxp1 . If x∗ is the critical value at which

it is optimal to invest, ‘value matching’ and ‘smooth pasting’ give

V (x∗) = x∗ − I, V ′(x∗) = 1. [6]

From these two equations, we can find C and x∗:

V ′(x∗) = Cp1(x
∗)p1−1 = 1, C = (x∗)1−p1/p1.

Then value matching gives

C(x∗)p1 = x∗ − I, x∗/p1 = x∗ − I, x∗ =
p1

(p1 − 1)
I.

So we should not invest if the initial value x is below x∗ = qI, where q :=
p1/(p1 − 1) (”Tobin’s q”).

Note that this is different from the traditional NPV (net present value)
accountancy approach. [5]
[Seen, lectures]
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