
Math482 EXAMINATION SOLUTIONS 2015

Q1. Perfect Markets.
For simplicity, we shall confine ourselves to option pricing in the simplest

(idealised) case, of a perfect, or frictionless, market. This entails various as-
sumptions:
a. No transaction costs. We assume that there is no financial friction in the
form of transaction costs (one can include transaction costs in the theory,
but this is considerably harder). [3]
b. No taxes. We assume similarly that there are no taxes. We note that a
Tobin tax, designed partly to damp down excessive volumes of trading and
partly to raise money for good causes, has recently been suggested. [3]
c. Same interest rates for borrowing and for lending. This is clearly unre-
alistic, as banks make their money on the difference. But it is a reasonable
first approximation, and simplifies such things as arbitrage arguments. [3]
d. Perfect information. We assume that all market participants have perfect
information about the past history of price movements, but have no fore-
knowledge of price-sensitive information (i.e. no insider trading) – and no
information asymmetry: all participants are equally knowledgeable. [3]
e. No liquidity restrictions. That is, one can buy or sell unlimited quantities
of stock at the currently quoted price. However, in a crisis, no-one wants to
trade, and liquidity dries up. [3]
f. Economic agents are price takers and not price makers. In practice, this is
true for small market participants but not for large ones. Big trades do move
markets (price is the level at which supply and demand balance; big trades
affect this balance significantly). This restriction emphasizes the difference
between Economics and Finance. Much of Economics is concerned with how
prices are arrived at (supply and demand, etc.). In Finance, at least here,
we take prices as given. [3]
g. No credit risk. Perfect markets assume that all market participants
are willing and able to honour their commitments. This ignores the risk
of bankruptcy, etc. [3]
h.No restriction on order size; no delay in executing orders. In practice, exe-
cuting small orders is uneconomic, so there are size limitations. Also, orders
are dealt with in job lots, for efficiency. Delays do occur in executing orders,
particularly large ones. [2]

Other risks, e.g.: fraud; human error; insider trading; etc. [2]
[Seen – lectures]
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Q2. (i) A market has no arbitrage (is NA, or is viable) if there is no trading
strategy that starts from value zero, always has final value non-negative and
has positive final value with positive probability – that is, if one cannot create
riskless profit (‘free money’), even some of the time. [2]

A market is complete if every contingent claim can be replicated by a
suitable combination of cash and the underlying – that is, every option has
a hedging portfolio replicating it as a combination of cash and stock. [2]

An equivalent martingale measure (EMM) (or risk-neutral measure) is a
measure P ∗ (or Q) equivalent to the real (or physical), measure P (in the
probability space of our model for the market) (= has the same null sets as P )
under which discounted asset prices are martingales (P ∗-martingales). [2]
(ii) The No-Arbitrage Theorem says that the model is NA iff EMMs exist. [2]

The Completeness Theorem says that a NA market is complete iff EMMs
are unique. [2]

The Fundamental Theorem of Asset Pricing (FTAP) combines these: a
market is NA and complete iff EMMs exist and are unique. [2]

The Risk-Neutral Valuation Formula (RNVF) quantifies this by saying
that the price at time t ∈ [0, T ] of an asset with payoff h at expiry T is

Vn(H) = (1 + r)−(N−n)E∗[VN(H)|Fn] = (1 + r)−(N−n)E∗[h|Fn]

(H is the hedging strategy above, r the riskless interest rate). [2]
(iii) Real markets do show arbitrage opportunities. These are given by traders
who buy or sell at incorrect prices. These can be identified and exploited by
arbitrageurs, who buy what is sold too cheaply and sell what is bought too
dearly, pocket the (riskless) profit, sell or buy at the correct price – and
then repeat, until the trader thus offering ‘free money’ is driven from the
market, solvent or otherwise. So arbitrage opportunities are transient, and
are a ‘second-order effect’ – are of secondary importance overall. [6]
(iv) Real markets are incomplete. This is observed in non-uniqueness of real
prices – the bid-ask spread (‘You’d better shop around’). It is also shown in
the impossibility of option sellers (say) hedging their position perfectly. But
they do not need to. Institutions sell options not in a defensive way, seeking
to cover themselves completely against all possible loss. They provide a
service in offering option buyers insurance against adverse price movements,
and make most of their money on this. They will be content to be able to
hedge against most, not all, of their possible losses, on options expiring in
the money and exercised against them. [5]
[Seen – lectures]
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Q3 (Rubber options). The price of rubber now is $ 185/100kg. Next year, it
will be 195 or 180, each with positive probability. The strike is K = 185.
Risk-neutral measure. We determine p∗, the ‘up probability’, so as to make
the price a martingale. Neglecting interest, this gives

185 = p∗.195 + (1− p∗).180 = 180 + 15p∗, 5 = 15p∗, p∗ = 1/3.

(i) Pricing. There is no discounting, so the value V0 at time 0 is the P ∗-
expectation E∗ of the payoff H next year:

V0 = E∗[H] = p∗.10 + (1− p∗).0 = 10p∗ = 10.1/3 = 3.33. [5]

(ii) Hedging. The call C is financially equivalent to a portfolio Π consisting
of a combination of cash and rubber, as the binomial model is complete – all
contingent claims (options etc.) can be replicated. To find which combination
(ϕ0, ϕ1) of cash and rubber, we solve two simultaneous linear equations:

Up : 10 = ϕ0 + 195ϕ1,

Down : 0 = ϕ0 + 180ϕ1.

Subtract: 10 = 15ϕ1: ϕ1 = 2/3.
Substitute: ϕ0 = −180ϕ1 = −180× 2/3 = −120.
So C is equivalent to the portfolio Π = (−120, 2/3): long, 2/3 of 100kg
rubber, short, $ 120 cash.
Check: in a year’s time,
Rubber up: Π is worth (2/3).195 - 120 = 130 - 120 = 10, as H is;
Rubber down: Π is worth (2/3).180 - 120 = 0, as H is. [5]
Arbitrage. By (i) and (ii), you know C and Π are worth 3.33 now.
(iii) If you see C being traded (= bought and sold) for more than it is worth,
sell it, for 4. You can buy it, or equivalently the hedging portfolio Π, for 3.33.
Pocket the risk-free profit (67 cents per option) now. The hedge enables you
to meet your obligations to the option holder, at zero net cost. [4]
(iv) If C is being traded for less than it is worth, buy it, for 3. You can sell
it, equivalently Π, for 3.33. Pocket the risk-free profit (33 cents) now. Again,
the option payoff clears your position, at zero net cost. [4]
(v) Call options of rubber are bought by manufacturers of tyres, etc., as an
insurance policy against prices moving up (e.g., after a bad harvest). [3]
(vi) Put options of rubber are bought by growers, as an insurance policy
against prices moving down (e.g., after a good harvest). [3]
Options of either kind may be traded opportunistically, by speculators. [1]
[Similar seen: lectures and problems]
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Q4. (i) Brownian motion (BM) W = (W (t)), or W = (Wt) (whichever is
more convenient) is defined as the process with:
(a) W (0) = 0; [1]
(b) W has stationary independent Gaussian increments, with
W (s+ t)−W (s) ∼ N(0, t) for all s ≥ 0; [2]
(c) the paths t 7→ W (t) are continuous (in t, a.s. in ω). [2]
(ii)Occurrence of BM. Brownian motion is widely used to model driving noise
– the noise, or error, or unpredictability, in the world, that makes the future
unpredictable. It is the signature of phenomena which are the visible end-
product of a large number of individually negligible causes. Mathematically,
this is a result of the Central Limit Theorem (CLT). In finance, one sees this
clearly in BM as the limit of the binomial tree model. [5]
(iii) Brownian covariance. For s ≤ t,

Wt = Ws + (Wt −Ws), WsWt = W 2
s +Ws(Wt −Ws).

Take expectations: on the left we get cov(Ws,Wt). The first term on the right
is, as E[Ws] = 0, var(Ws) = s. As Brownian motion (BM) has independent
increments, Wt −Ws is independent of Ws, so

E[Ws(Wt −Ws)] = E[Ws].E[Wt −Ws] = 0.0 = 0.

Combining, cov(Ws,Wt) = s for s ≤ t. Similarly, for t ≤ s we get t. Com-
bining, cov(Ws,Wt) = min(s, t). [5]
(iv) Brownian scaling. With Wc(t) := W (c2t)/c,

cov(Wc(s),Wc(t)) = E[W (c2s)/c.W (c2t)/c] = c−2min(c2s, c2t) = min(s, t) = cov(Ws,Wt).

SoWc has the same mean 0 and covariance min(s, t) as BMW . It is also (from
its definition) continuous, Gaussian, stationary independent increments etc.
So it has all the defining properties of BM. So it is BM. [5]
(v) Scale in finance. Small agents are price takers rather than price makers
– they can trade as much as they want at their own small scale, without
shifting prices. By contrast, large agents are price makers rather than price
takers: large trades shift prices (as they affect the current balance of supply
and demand). Use of BM ignores this difference, because of Brownian scaling
(iv), and this is a limitation of the Black-Scholes model. [5]
[Mainly seen – lectures and problems]
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Q5 Ornstein-Uhlenbeck (OU) process.
(i) The OU SDE dV = −βV dt+σdW (OU) models the velocity of a diffusing
particle. The −βV dt term is frictional drag; the σdW term is noise. [3]
(ii) e−βt solves the corresponding homogeneous DE dV = −βV dt. So by
variation of parameters, take a trial solution V = Ce−βt. Then

dV = −βCe−βtdt+ e−βtdC = −βV dt+ e−βtdC,

so V is a solution of (OU) if e−βtdC = σdW , dC = σeβtdW , C = c +
σ
∫ t

0
eβudW . So with initial velocity v0, V = e−βtC is

V = v0e
−βt + σe−βt

∫ t

0

eβudWu. [5]

(iii) V comes from W , Gaussian, by linear operations, so is Gaussian.
Vt has mean v0e

−βt, as E[eβudWu] =
∫ t

0
eβuE[dWu] = 0.

By the Itô isometry, Vt has variance

E[(σe−βt

∫ t

0

eβudWu)
2] = σ2e−2βt

∫ t

0

(eβu)2du

= σ2e−2βt[e2βt − 1]/(2β) = σ2[1− e−2βt]/(2β).

So Vt has distribution N(v0e
−βt, σ2(1− e−2βt)/(2β)). [5]

(So the limit distribution as t → ∞ is N(0, σ2/(2β)), the Maxwell-Boltzmann
distribution of Statistical Mechanics.)
(iv) For u ≥ 0, the covariance is cov(Vt, Vt+u), which is

σ2E[e−βt

∫ t

0

eβvdWv.e
−β(t+u)(

∫ t

0

+

∫ t+u

t

)eβwdWw].

By independence of Brownian increments,
∫ t+u

t
contributes 0, so by above

cov(Vt, Vt+u) = e−βuvar(Vt) = σ2e−βu[1−e−2βt]/(2β) → σ2e−βu/(2β) (t → ∞).
[5]

(v) V is Markov (a diffusion), being the solution of the SDE (OU). [3]
(vi) The process shows mean reversion – a strong push towards the central
value. This is characteristic of interest rates (under normal conditions). The
financial relevance is to the Vasicek model of interest-rate theory. [4]
[Seen, lectures.]
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Q6. American options – infinite horizon.
We deal with a put option – giving the right to sell at the strike price K,

at any time τ of our choosing. This τ has to be a stopping time: we decide
whether or not to stop at τ based on information already available.

Under the risk-neutral measure, the SDE for GBM becomes

dXt = rXtdt+ σXtdBt. (GBMr) [2]

To evaluate the option, we have to solve the optimal stopping problem

V (x) := sup
τ

Ex[e
−rτ (K −Xτ )

+]

(sup over all stopping times τ and X0 = x under Px). [3]
The process X satisfying (GBMr) is specified by a second-order linear

differential operator, its (infinitesimal) generator,

LX := rxD +
1

2
σ2x2D2, D := ϕ/ϕx. [3]

The closer X gets to 0, the less likely we are to gain by continuing. So we
should stop when X gets too small: stop at τ = τb := inf{t ≥ 0 : Xt ≤ b}
for some b ∈ (0, K). This gives the following free boundary problem for the
unknown value function V (x) and the unknown point b:

LXV = rV for x > b; V (x) = (K − x)+ for x = b;

V ′(x) = −1 for x = b (smooth fit);

V (x) > (K−x)+ for x > b; V (x) = (K−x)+ for 0 < x < b. [6]

Writing d := σ2/2 (‘d for diffusion’), LXV = rV is dx2V ′′+rxV ′−rV = 0.
Trial solution: V (x) = xp. Substituting gives a quadratic for p:

p2 − (1− r

d
)p− r

d
= 0.

The roots are p = 1 and p = −r/d. So the GS is V (x) = C1x+C2x
−r/d. [5]

But V (x) ≤ K for all x ≥ 0 (an option giving the right to sell at price K
cannot be worth more than K!), so C1 = 0:

C2 =
d

r

( K

1 + d/r

)1+r/d

, b =
K

1 + d/r
:

V (x) =
d

r

( K

1 + d/r

)1+r/d

x−r/d if x ∈ [b,∞), K − x if x ∈ (0, b]. [6]

[Seen – lectures] N. H. Bingham
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