
Math482 EXAMINATION SOLUTIONS 2016

Q1. (i) Size of trades.
Small trades do not change the price (appreciably). The price is the level

at which markets clear – that is, at which supply and demand balance. If
the size of a trade is small, this is negligible compared to the market.

Large trades, by contrast, do change prices, as the volume of the trade is
no longer negligible. [6]
(ii) Size of market participants.

A small market participant is a price taker. He is able to buy or sell (in
the amount relevant to him – small compared to the market) ‘without the
market noticing’, i.e. without changing the price, in any amount he chooses –
even a trade large to him will still be small compared to the market. By con-
trast, large market participants are price makers. They execute trades which
are noticed by the market, and which consequently do shift prices, as they
are big enough to alter the balance of supply and demand significantly. [6]
(iii) Size of markets in options and in underlying.

The underlying is the primary economic asset. Typically, it is a share
in a company (part ownership of the company’s assets). Or, it may be a
commodity (wheat, copper, oil, coffee, etc.). Because a company’s shares, or
a commodity’s price, may go up or down, options to buy or sell the under-
lying at a specified price (the strike price K) at or by a specified date (the
expiry T ) are bought and sold. Options serve two basic purposes: specula-
tion (seeking a financial profit, with no interest in the underlying as such)
and hedging (seeking insurance against adverse price movement in the un-
derlying). However, options, which have value, are assets in their own right,
and can be traded; there are even options on options, etc. The market in
options can become much bigger than the market in the underlying. This is
an artificial situation, in which the financial aspect becomes divorced from
economic reality, leading to instability in financial markets. [7]
(iv) To what extent are prices continuous?

Very large trades cause visible jumps in price, as in (i): they come as eco-
nomic shocks to the market. Small or even medium-sized trades do not cause
prices to jump if ‘viewed from a distance’. But viewed in enough detail, even
trades of normal dize do cause prices to jump. Heavily traded stocks under
normal market conditions have prices that look continuous from a distance
but have many small jumps close up, a phenomenon known as jitter. [6]
[Largely seen – lectures]
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Q2. Hedging.
(i) What is hedging? Hedging is protecting oneself against loss by buying the
opposite of one’s position. A hedging strategy not only enables one to cover
oneself in this way, but also to price the option, i.e., the cost of doing so. [4]
(ii) Who hedges, and why? Hedging is typically engaged in by sellers of op-
tions. One sells an option for money, to someone who is buying insurance,
and one hopes to make money from it. A seller who remains unhedged has
no protection against the loss involved in having the option exercised against
him. His position is then naked, and this may be too dangerous. [4]
(ii) Types of hedging. The commonest type of hedging is delta hedging, using
∆ := ∂C/∂S. The seller buys enough stock to offset his loss if the option is
exercised against him, to first order. Similarly for the other Greeks. [4]
(iii) Discrete v. continuous time; contrasts. In discrete time, one can hedge
in a complete market, but in an incomplete market there may be unhedgeable
risk. The option seller re-balances his portfolio at each time point. [2]

In continuous time, this re-balancing is possible in principle. Black-
Scholes markets are complete; the driving noise process is Brownian motion
(BM); discounted prices are martingales under the EMM, P ∗ or Q. The
Martingale Representation Theorem applies, and shows that option prices
can be represented as Brownian integrals. The integrand corresponds to the
hedging strategy. A hedger will need to re-balance continuously. [2]

In practice, this cannot be done. For, the sample paths of BM have in-
finite variation (as their quadratic variation is finite, by Lévy’s theorem).
Not only would re-balancing involve an infinite amount of trading (and so
infinite costs, as in reality transaction costs do exist), but would also have
to be done extremely roughly. Rebalancing would be like trying to ride a
bicycle, following a Brownian-like fractal path – impossible in practice. [2]
(iv) When, or to what extent, should an option seller hedge?

It depends on how the market moves (are you glad you sold the option
or sorry)? To trade, one needs to take a position – commit funds, in the
presence of uncertainty. One should not do so unless one expects to make
money. To trade, one should have a judgement of where the market is go-
ing, based on knowledge and experience, and be prepared to back it. If the
market moves against one, hedge to unwind one’s position – break even from
then on. In any case, one needs to know how to do this – just as one needs
to know where the (fire or emergency) exit is in a building, plane etc. [7]
[Mainly seen in lectures]
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Q3. American options. The discounting rate per unit time is 1 +ρ. With
‘up’ and ‘down’ factors 1+u, 1+d and ‘up’ and ‘down’ probabilities q, 1−q,
the discounted price process is a martingale iff (1+u)q+(1+d)(1−q) = 1+ρ:

uq + d(1− q) = ρ; (u− d)q = ρ− d : q =
ρ− d
u− d

. [3]

To price the American put in this (Cox-Ross-Rubinstein) binomial-tree model:
1. Draw a binary tree showing the initial stock value S and with the right
number, N , of time-intervals. [2]
2. Fill in the stock prices: after one time interval, these are Su (upper) and
Sd (lower); after two, Su2, Sud and Sd2; after i time-intervals, Sujdi−j at
the node with j ‘up’ steps and i− j ‘down’ steps. [2]
3. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs (fN,j = max[K − SujdN−j, 0]) from the option at the terminal nodes
(where the values of the European and American options coincide). [2]
4. Work back down the tree one time-step. Fill in (a) the ‘European’ value at
the penultimate nodes as the discounted values of the terminal values, under
the risk-neutral (P ∗, Q) measure – ‘q times upper right plus 1−q times lower
right’; (b) the ‘intrinsic’ (early-exercise) value; (c) the American put value
as the higher of these. [3]
5. Treat these values as ‘terminal node values’, and fill in the values one
time-step earlier by repeating Step 4 for this ‘reduced tree’. [2]
6. Iterate. The value of the American put at time 0 is the value at the
root - the last node to be filled in. The ‘early-exercise region’ is the node
set where the early-exercise value is the higher; the rest is the ‘continuation
region’. [2]
Connection with the Snell envelope.

Let Z = (Zn)Nn=0 be the payoff on exercising at time n. To price Zn, by
Un say, so as to avoid arbitrage: we work backwards in time. Recursively:

UN := ZN , Un−1 := max(Zn−1,
1

1 + ρ
E∗[Un|Fn−1]), [3]

the first alternative on the right corresponding to early exercise, the second to
the discounted expectation under P ∗ (or Q), as usual. Let Ũn = Un/(1 + ρ)n

be the discounted price of the American option. Then

ŨN = Z̃N , Ũn−1 = max(Z̃n−1, E
∗[Ũn|Fn−1]) : [3]

(Ũn) is the Snell envelope of the discounted payoff process (Z̃n). [3]
[Seen – lectures]
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Q4. (i) The exponential martingale for Brownian motion.
The MGF of X ∼ N(µ, σ2) is E[etX ] = exp{µt+ 1

2
σ2t2}, (∗),

given. For B = (Bt) Brownian motion (BM), write

Mt := exp{θBt −
1

2
θ2t}.

Then with F = (Ft) the Brownian filtration, for s ≤ t,

E[Mt|Fs] = E[exp{θBt −
1

2
θ2t}|Fs]

= E[exp{θ(Bs + (Bt −Bs))−
1

2
θ2s− 1

2
θ2(t− s)}|Fs]

= exp{θBs −
1

2
θ2s}.E[exp{θ(Bt −Bs))−

1

2
θ2(t− s)}|Fs],

taking out what is known. The first term on the right is Ms. The conditioning
in the second term can be omitted, by independent increments of BM. But
Bt −Bs ∼ N(0, t− s), which has MGF

E[exp{θ(Bt −Bs)}] = exp{1

2
θ2(t− s)}

(by (∗), with µ 7→ 0, θ2 7→ t− s, t 7→ θ). So the second term on RHS 1:

E[Mt|Fs] = Ms.

So M is a martingale. // [11]
(ii) By the normal MGF (given), MY (t) = E[etY ] = exp{µt+ 1

2
σ2t2}. Taking

t = 1, MY (1) = E[eY ] = exp{µ+ 1
2
σ2}. As X = eY , this gives

E[X] = E[eY ] = eµ+
1
2
σ2

. [4]

(iii) In the Black-Scholes model, stock prices are geometric Brownian mo-
tions, driven by stochastic differential equations

dS = S(µdt+ σdB), (GBM)

with B Brownian motion. This has solution (quote – Itô’s Lemma)

St = S0 exp{(µ− 1

2
σ2)t+ σBt}.
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So logSt = logS0 + (µ− 1
2
σ2)t+ σBt is normal, so St is lognormal. [5]

(iv) In Girsanov’s theorem, we have a process

Lt := exp{
∫ t

0

µsdBs −
1

2

∫ t

0

µ2
sds} (0 ≤ t ≤ T ),

with (µs) adapted (with
∫ T
0
µ2
sds < ∞), and L = (Lt) a martingale. By

(i), this martingale condition is satisfied for µt constant, identically equal
to µ, interpreted as the interest rate – of the risky stock, which Girsanov’s
theorem transforms by change of measure to r, the riskless interest rate. So
(i) enables us to apply Girsanov’s theorem, and so obtain the Black-Scholes
formula in continuous time. [5]
[(i), unseen; (ii), seen – Problems; (iii), (iv), seen, lectures]
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Q5. (i) For s ≤ t,

E[B2
t |Fs] = E[(Bs + (Bt −Bs))

2|Fs]
= B2

s +BsE[(Bt −Bs)|Fs] + E[(Bt −Bs)
2]

≥ B2
s + 0 (as the last term is ≥ 0):

E[B2
t |Fs] ≥ B2

s ,

showing that (B2
t ) is a submartingale. [5]

(ii) The same calculation shows that for s ≤ t,

E[B2
t |Fs] = E[(Bs + (Bt −Bs))

2|Fs]
= B2

s +BsE[(Bt −Bs)|Fs] + E[(Bt −Bs)
2]

= B2
s + 0 + (t− s) :

E[B2
t − t|Fs] = B2

s − s,

showing that (B2
t − t) is a martingale. [5]

(iii) Since B2
t is a submartingale (i) and t is increasing,

B2
t = (B2

t − t) + t

is the Doob-Meyer decomposition of the submartingale B2
t (increasing on

average), into its martingale part and its increasing part. This identifies t as
the quadratic variation of Brownian motion (Lévy’s theorem). [4]
(iv) One may write Lévy’s theorem for t+ dt and for t, and subtract, giving
(in differential notation)

(dBt)
2 = dt.

This is the cornerstone of Itô (or stochastic) calculus, and of Itô’s Lemma in
particular. [4]
(v) Itô calculus and Itô’s Lemma, together with Girsanov’s theorem on
change of measure, are the keys to obtaining the Black-Scholes formula in
continuous time, the central result of option pricing. [4]
(vi) Under normal trading conditions, new price-sensitive information arrives
(as does the ordinary news) unpredictably (last week’s news is no guide to
tomorrow’s), and the independent-increments assumption is reasonable here.
But in a sustained crisis, this breaks down (both last week’s and tomorrow’s
news are on the same crisis), and we need a new model. [3]
[Mainly seen – lectures and problems]
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Q6. (i) Sharpe ratio. The Sharpe ratio is θ := (µ − r)/σ: the excess return
µ− r (the investor’s reward for taking a risk), compared with the degree of
risk as measured by σ. [3]
(ii) Derivation of the Black-Scholes formula via Girsanov’s Theorem.

We summarise the main steps briefly as follows:
(a) Dynamics are given by GBM , dSt = µSdt+ σSdWt. [1]
(b) Discount: dS̃t = (µ− r)S̃dt+ σS̃dWt = σS̃(θdt+ dWt). [1]
(c) Use Girsanov’s Theorem to change µ to r, so θ := (µ− r)/σ to 0: under
P ∗, dS̃t = σS̃dWt. [2]
(d) With V the value process, H the strategy, h the payoff, dṼt(H) = HtdS̃t =
Ht.σS̃dWt. Integrate: Ṽ gives a P ∗-mg, so has constant E∗-expectation. [2]
(e) This gives the Risk-Neutral Valuation Formula (RNVF). [1]
(f) From RNVF, we can obtain the Black-Scholes formula, by integration. [1]
(iii) Hedging strategy.

We seek a hedging strategy H = (H0
t , Ht) (H0

t for cash, Ht for stock) that
replicates the value process V = (Vt), given by RNVF:

Vt = H0
t +HtSt = E∗[e−r(T−t)h|Ft]. [2]

Now
Mt := E∗[e−rTh|Ft] [2]

is a (uniformly integrable) martingale under the filtration Ft, that of the driv-
ing BM in (GBM), and the filtration is unchanged by the Girsanov change
of measure. So by the Representation Theorem for Brownian Martingales,
there is some adapted process K = (Kt) with

Mt = M0 +

∫ t

0

KsdWs (t ∈ [0, T ]). [2]

Take
Ht := Kt/(σS̃t), H0

t := Mt −HtS̃t : [2]

dMt = KtdWt =
Kt

σS̃t
.σS̃tdWt = HtdS̃t, [2]

and the strategy K is self-financing.
(iv) Limitations. This is of limited practical value:
(a) the Representation Theorem does not give K = (Kt) explicitly; [2]
(b) as Brownian paths have infinite variation, exact hedging in the Black-
Scholes model is too rough to be practically possible. [2]
[Seen – Lectures] N. H. Bingham
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