
MATH482 SOLUTIONS to MOCK EXAMINATION, 2013

Q1. (i) Arbitrage. An arbitrage opportunity is the possibility of making a
riskless profit – a trading strategy in which one starts with nothing, never
makes a loss, but might make a profit.
(ii) The assumption of absence of arbitrage is unrealistic – but no more
so than the other assumptions of a perfect market (same interest rate for
borrowing and lending, no liquidity restrictions, no transaction costs, no
taxes etc.).

Small arbitrage opportunities may be present and persist. Large ones
would attract the attention of speculators and other market participants.
This would change the balance of supply and demand, and so prices, so the
arbitrage opportunity would shrink (be ‘arbitraged away’).
(iii) If the market is arbitrage-free,
(a) there exists an equivalent martingale measure;
(b) equilibrium may be possible (it is impossible if arbitrage is present).
(ii) Completeness. A market is complete if every contingent claim can be
replicated, by a combination of stock and cash. Now any such combination
may be priced uniquely (count the cash; count the stock; look up the stock
price; do the arithmetic). So in a complete market, prices are unique, and
do not depend on the attitude to risk of investors (their utility function).

In reality, prices are not unique – typically, they fill out an interval, the
bid-ask spread. This reflects the difference between buying and selling, and
the need to have a margin between the two to cover overheads etc.
(iii) Equivalent martingale measures (EMMs). We model the uncertainty in
risky stocks by a probability measure, P say. As stock prices occur in the
real economy, we call P the real(-world) measure. As always, we discount
prices over time, to work with real prices rather than nominal prices. Two
measures P and Q are called equivalent if they have the same null sets (sets
of probability 0) – i.e., the same things are possible/impossible under both
P and Q. We call P ∗ an/the equivalent martingale measure if under P ∗,
discounted asset prices become martingales. The two key results re:
No-arbitrage Theorem. The market has no arbitrage (is NA) iff EMMs exist.
Completeness Theorem. The market is complete iff EMMs are unique.
(iv) Risk-neutral valuation. For complete NA markets, the unique EMM
P ∗ is called the risk-neutral measure. The risk-neutral valuation formula says
that for a complete NA market, asset prices at time t can be calculated as
the conditional P ∗-expectation of the discounted payoff at expiry T .
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Q2. Perfect Markets. For simplicity, we shall confine ourselves to option
pricing in the simplest (idealised) case, of a perfect, or frictionless, market.
This entails various assumptions:
No transaction costs. We assume that there is no financial friction in the
form of transaction costs (one can include transaction costs in the theory,
but this is considerably harder).
No taxes. We assume similarly that there are no taxes. We note that a Tobin
tax, designed partly to damp down excessive volumes of trading and partly
to raise money for good causes, has recently been suggested.
Same interest rates for borrowing and for lending. This is clearly unrealistic,
as banks make their money on the difference). But it is a reasonable first
approximation, and simplifies such things as arbitrage arguments.
Perfect information. We assume that all market participants have perfect
information about the past history of price movements, but have no fore-
knowledge of price-sensitive information (i.e. no insider trading) – also, no
information asymmetry, with some participants more knowledgeable than
others.
No liquidity restrictions. That is, one can buy or sell unlimited quantities
of stock at the currently quoted price. However, in a crisis, no-one wants to
trade, and liquidity dries up.
Economic agents are price takers and not price makers. In practice, this is
true for small market participants but not for large ones. Big trades do move
markets (price is the level at which supply and demand balance; big trades
affect this balance significantly).

This restriction emphasizes the difference between Economics and Fi-
nance. Much of Economics is concerned with how prices are arrived at (sup-
ply and demand, etc.). In Finance, at least in this course, we take prices as
given.
No restriction on order size; no delay in executing orders. In practice, exe-
cuting small orders is uneconomic, so there are size limitations. Also, orders
are dealt with in job lots, for efficiency. Delays do occur in executing orders,
particularly large ones.
No credit risk. Perfect markets assume that all market participants are
willing and able to honour their commitments. This ignores the risk of
bankruptcy, etc. (necessary, as limited liability is needed to give ordinary
market participants the confidence to undertake trade, commerce, invest-
ment etc.).

Other risks, e.g.: fraud; human error; insider trading; etc.
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Q3. Put-Call Parity. The price (or value) of the portfolio at time t is
Ke−r(T−t), that is,

S + P − C = Ke−r(T−t).

Proof. We prove this by arbitrage. Consider a portfolio which is long one
asset, long one put and short one call; write Π (or Πt) for its value. So

Π = S + P − C (S: long asset; P: long put; -C: short call).

Recall that the payoffs at expiry are:{
max(S −K, 0) or (S −K)+ for a call,
max(K − S, 0) or (K − S)+ for a put.

So the value of the above portfolio at expiry is K:{
S + 0− (S −K) = K if S ≥ K
S + (K − S)− 0 = K if K ≥ S,

This portfolio thus guarantees a payoff K at time T . How much is it
worth at time t?

The riskless way to guarantee a payoffK at time T is to depositKe−r(T−t)

in the bank at time t and do nothing. If the portfolio is offered for sale at
time t too cheaply – at a price Π < Ke−r(T−t) – I can buy it, borrow Ke−r(T−t)

from the bank, and pocket a positive profit Ke−r(T−t)−Π > 0. At time T my
portfolio yields K (above), while my bank debt has grown to K. I clear my
cash account – use the one to pay off the other – thus locking in my earlier
profit, which is riskless. If on the other hand the portfolio is offered for sale
at time t at too high a price – at price Π > Ke−r(T−t) – I can do the exact
opposite. I sell the portfolio short – that is, I buy its negative, long one call,
short one put, short one asset, for −Π, and invest Ke−r(T−t) in the bank,
pocketing a positive profit −(−Π)−Ke−r(T−t) = Π−Ke−r(T−t) > 0. At time
T , my bank deposit has grown to K, and I again clear my cash account –
use this to meet my obligation K on the portfolio I sold short, again locking
in my earlier riskless profit.

Thus the rational price for the portfolio at time t is exactlyKe−r(T−t). Any
other price presents arbitrageurs with an arbitrage opportunity (to make and
lock in a riskless profit) – which they will take! This proves put-call parity.

Note that the value of the portfolio S + P −C is the discounted value of
the riskless equivalent.
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Q4. Equivalence of American and European calls.
THEOREM (R. C. Merton, 1973). It is never optimal to exercise an
American call option early. That is, the American call option is equivalent
to the European call, so has the same value:

C = c.

First Proof. Consider the following two portfolios:
I: one American call option plus cash Ke−rT ; II: one share.
The value of the cash in I is K at time T , Ke−r(T−t) at time t. If the call
option is exercised early at t < T , the value of Portfolio I is then St−K from
the call, Ke−r(T−t) from the cash, total

St −K +Ke−r(T−t).

Since r > 0 and t < T , this is < St, the value of Portfolio II at t. So Portfolio
I is always worth less than Portfolio II if exercised early.

If however the option is exercised instead at expiry, T , the American call
option is then the same as a European call option. Then (as in Proposition 1
of IV.7): at time T , Portfolio I is worth max(ST , K) and Portfolio II is worth
ST . So:

before T, I < II,
at T, I ≥ II always, and > sometimes.

This direct comparison with the underlying [the share in Portfolio II] shows
that early exercise is never optimal. Since an American option at expiry is
the same as a European one, this completes the proof. //
Second Proof. Since American options confer all the rights of European
options, and more, they must be worth at least as much: C ≥ c.

Now by Proposition 1 of IV.6, c0 ≥ S0 − Ke−rT . This and C0 ≥ c0
give C0 ≥ S0 − Ke−rT . Using t < T as initial time instead of 0: Ct ≥
St −Ke−r(T−t). Now r > 0 and t < T , so Ke−r(T−t) < K. This gives

Ct > St −K.

Now if it were optimal to exercise early at t < T , the value of the Ameri-
can call (the amount it would yield) would be St − K. So we would have
Ct = St −K. This would contradict the inequality above, so early exercise
can never be optimal. //
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Q5. The Ornstein-Uhlenbeck process. (i) The Ornstein-Uhlenbeck SDE dV =
−βV dt+ σdW (OU) models the velocity of a diffusing particle. The −βV dt
term is frictional drag; the σdW term is noise. [2]
(ii) e−βt solves the corresponding homogeneous DE dV = −βV dt. So by
variation of parameters, take a trial solution V = Ce−βt. Then

dV = −βCe−βtdt+ e−βtdC = −βV dt+ e−βtdC,

so V is a solution of (OU) if e−βtdC = σdW , dC = σeβtdW , C = c +∫ t
0 e

βudW . So with initial velocity v0,

V = v0e
−βt + σe−βt

∫ t

0
eβudWu. [4]

(iii) V is Gaussian, as it is obtained from the Gaussian process W by linear
operations.
Vt has mean v0e

−βt, as E[eβudWu] =
∫ t
0 e

βuE[dWu] = 0.
By the Itô isometry, Vt has variance

E[(σe−βt
∫ t

0
eβudWu)

2] = σ2
∫ t

0
(e−βt+βu)2du

= σ2e−2βt
∫ t

0
e2βudu = σ2e−2βt[e2βt − 1]/(2β) = σ2[1− e−2βt]/(2β).

So the limit distribution as t → ∞ is N(0, σ2/(2β)). [4]
(iv) For u ≥ 0, the covariance is cov(Vt, Vt+u), which (subtracting off v0e

−βt

as we may) is

σ2E[e−βt
∫ t

0
eβvdWv.e

−β(t+u)(
∫ t

0
+

∫ t+u

t
)eβwdWw].

By independence of Brownian increments, the
∫ t+u
t term contributes 0, leav-

ing as before

cov(Vt, Vt+u) = σ2e−βu[1− e−2βt]/(2β) → σ2e−βu/(2β) (t → ∞). [4]

(v) The process V is Markov (a diffusion), being the solution of the SDE
(OU). [3]
(vi) The process shows mean reversion, and the financial relevance is to the
Vasicek model of interest-rate theory. [3]
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Q6. American options – infinite horizon.
We deal with a put option – giving the right to sell at the strike price K,

at any time τ of our choosing. This τ has to be a stopping time: we decide
whether or not to stop at τ based on information already available.

Under the risk-neutral measure, the SDE for GBM becomes

dXt = rXtdt+ σXtdBt. (GBMr)

To evaluate the option, we have to solve the optimal stopping problem

V (x) := sup
τ

Ex[e
−rτ (K −Xτ )

+]

(sup over all stopping times τ and X0 = x under Px).
The process X satisfying (GBMr) is specified by a second-order linear

differential operator, its (infinitesimal) generator,

LX := rxD +
1

2
σ2x2D2, D := ∂/∂x.

The closer X gets to 0, the less likely we are to gain by continuing. So we
should stop when X gets too small: stop at τ = τb := inf{t ≥ 0 : Xt ≤ b}
for some b ∈ (0, K). This gives the following free boundary problem for the
unknown value function V (x) and the unknown point b:

LXV = rV for x > b; V (x) = (K − x)+ for x = b;

V ′(x) = −1 for x = b (smooth fit);

V (x) > (K − x)+ for x > b; V (x) = (K − x)+ for 0 < x < b.

Writing d := σ2/2 (‘d for diffusion’), LXV = rV is dx2V ′′ + rxV ′ − rV = 0.
Trial solution: V (x) = xp. Substituting gives a quadratic for p:

p2 − (1− r

d
)p− r

d
= 0.

One root is p = 1; the other is p = −r/d. So the general solution is V (x) =
C1x + C2x

−r/d. But V (x) ≤ K for all x ≥ 0 (an option giving the right to
sell at price K cannot be worth more than K!), so C1 = 0:

C2 =
d

r

( K

1 + d/r

)1+r/d
, b =

K

1 + d/r
.

So

V (x) =
d

r

( K

1 + d/r

)1+r/d
x−r/d if x ∈ [b,∞), K − x if x ∈ (0, b].
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