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Q1. (i) For a random variable X ∼ U [0, 1], take its dyadic expansion X =∑∞
1 ϵn/2

n. Thus ϵ1 = 0 iff X ∈ [0, 1/2), 1 iff X ∈ [1/2, 1) (or [1/2, 1]: we
can omit 1, as it carries 0 probability). If ϵ1, . . . , ϵn−1 are already defined, on
the dyadic intervals [k/2n−1, (k + 1)/2n−1), and independent fair coin-tosses
(Bernoulli B(1

2
)), split each interval into two halves: ϵn = 0 on the left half,

1 on the right half. Then ϵn is again B(1
2
), and is independent of ϵ1, . . . , ϵn−1:

P (ϵn = 0, ϵ1 = e1, . . . , ϵn−1 = en−1) =
1

2
P (ϵ1 = e1, . . . , ϵn−1 = en−1)

= P (ϵn = 0)P (ϵ1 = e1, . . . , ϵn−1 = en−1),

and similarly for ϵn = 1. By induction, ϵn (n = 1, 2, . . .) are independent
B(1

2
). Conversely, given ϵn independent coin tosses, form X :=

∑∞
1 ϵn/2

n.
ThenXn :=

∑n
1 ϵk/2

k → X a.s. The distribution function Fn ofXn has jumps
1/2n at k/2n, k = 0, 1, . . . , 2n − 1. This ‘saw-tooth jump function’ converges
to x on [0, 1], the distribution function of U [0, 1] (sup |Fn(x)− x| = 2−n → 0
as n → ∞). So X ∼ U [0, 1]. So if X =

∑∞
1 ϵn/2

n, X ∼ U [0, 1] iff ϵn are
independent coin tosses – the Lebesgue probability space models both (a)
length on the unit interval and (b) infinitely many independent coin tosses.
(ii) From the given U [0, 1], we get by dyadic expansion as above a sequence
of independent coin-tosses ϵn. Rearrange these into a two-suffix array ϵjk (as
with Cantor’s proof of 1873 that the rationals are countable). The ϵjk are all
independent, so the Xj :=

∑
ϵjk/2

k are independent, and U [0, 1] by above.
So from one U(0, 1), we get in this way infinitely many copies.
(iii) The standard normal distribution function Φ is continuous and strictly
increasing, so its inverse function Φ−1(t) := inf{Φ(x) ≥ t} (0 < t < 1) is
continuous and strictly increasing. Then if U ∼ U [0, 1], X := Φ−1(U) ∼ Φ:
for, {X ≤ x} = {Φ−1(U) ≤ x} = {U ≤ Φ(x)}, which has probability Φ(x)
as U is uniform. Hence by (ii) above we can then generate infinitely many
independent standard normals. We can hence simulate a Brownian motion
B = (Bt) from Bt =

∑∞
0 λnZn∆n(t), with Zn independent standard normals,

∆n(t) the Schauder functions and λn suitable normalising constants.
(iv) Similarly, given one U [0, 1], we can split it as in (ii) into infinitely many
independent U [0, 1]s. From each, we can generate a Brownian motion by
(iii), giving infinitely many independent Brownian motions.
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Q2. (i) The Itô isometry states that for f ∈ H2 := H2(0, T ) :=
{f : E[

∫ T
0 f2(ω, t)dt] < ∞},

E[(
∫ t

0
f 2(ω, u)dBu)

2] = E[
∫ t

0
f2(ω, u)du].

(ii) Conditional Itô isometry. For 0 ≤ s ≤ t ≤ T ,

E[(
∫ t

s
f 2(ω, u)dBu)

2|Fs] = E[
∫ t

s
f2(ω, u)du|Fs].

Proof. It suffices to show that for all A ∈ Fs,

E[I(A)(
∫ t

s
f 2(ω, u)dBu)

2] = E[I(A)
∫ t

s
f2(ω, u)du].

This follows from the unconditional Itô isometry, applied to the integrand
g(ω, u) := fIA(ω)I(s,t](u).
(iii) For s ≤ t, Mt := (

∫ t
s f(ω, u)dBu)

2 −
∫ t
0 f

2(ω, u)du,

E[Mt|Fs] = E[{(
∫ s

0
+

∫ t

s
)fudBu}2|Fs]−

∫ s

0
f2
udu− E[

∫ t

s
f 2
udu|Fs]

= E[(
∫ s

0
fudBu)

2]+2(
∫ s

0
fudBu)E[

∫ t

s
fudBu|Fs]+E[(

∫ t

s
fudBu)

2|Fs]−
∫ s

0
f 2
udu−E[

∫ t

s
f2
udu|Fs].

The first and fourth terms give Ms. The third and fifth terms cancel, by
the conditional Itô isometry (ii). The second factor in the second term in-
volves an Itô integral, which (for an integral f ∈ H2) is a martingale, so has
constant expectation, which is 0 on taking t = s, so the second term is 0.
Combining, the RHS is Ms, which proves that M is a martingale.
(iv) Taking f ≡ 1 gives Mt := B2

t − t is a martingale.

N. H. Bingham
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