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Q1. (i) For a random variable X ~ UJ0, 1], take its dyadic expansion X =
Y e,/2". Thus ¢ = 0iff X € [0,1/2), 1 iff X € [1/2,1) (or [1/2,1]: we
can omit 1, as it carries 0 probability). If €,...,€,_; are already defined, on
the dyadic intervals [k/2"7! (k + 1)/2"7!), and independent fair coin-tosses
(Bernoulli B(2)), split each interval into two halves: €, = 0 on the left half,
1 on the right half. Then ¢, is again B (%), and is independent of €1, ..., €,_1:

Ple,=0,e1=e1,...,64-1 =€y_1) = §P(€1 =€, €1 = €p_1)

= P(En = O)P(El = €1y...,€6p_1 = en_l),

and similarly for ¢, = 1. By induction, €, (n = 1,2,...) are independent

B(}). Conversely, given ¢, independent coin tosses, form X := 3$%¢, /2"

Thén X, =T e/28 — X a.s. The distribution function F,, of X,, has jumps
1/2m at k/2" k =0,1,...,2" — 1. This ‘saw-tooth jump function’ converges
to x on [0, 1], the distribution function of U0, 1] (sup |F,(x) —z| =2""—0
as n — 00). So X ~ U[0,1]. Soif X = >7°¢,/2", X ~ U[0,1] iff ¢, are
independent coin tosses — the Lebesgue probability space models both (a)
length on the unit interval and (b) infinitely many independent coin tosses.
(ii) From the given U|0, 1], we get by dyadic expansion as above a sequence
of independent coin-tosses €,. Rearrange these into a two-suffix array €5 (as
with Cantor’s proof of 1873 that the rationals are countable). The €;;, are all
independent, so the X; := 3 ¢;z/2" are independent, and U0, 1] by above.
So from one U(0,1), we get in this way infinitely many copies.

(iii) The standard normal distribution function ® is continuous and strictly
increasing, so its inverse function ®~'(¢) := inf{®(x) > ¢} (0 < ¢ < 1) is
continuous and strictly increasing. Then if U ~ U[0,1], X := &~ 1(U) ~ &:
for, {X < a2} = {®1(U) < 2} = {U < ®(x)}, which has probability ®(x)
as U is uniform. Hence by (ii) above we can then generate infinitely many
independent standard normals. We can hence simulate a Brownian motion
B = (By) from B; = > ° \nZ, A, (t), with Z,, independent standard normals,
A, (t) the Schauder functions and A, suitable normalising constants.

(iv) Similarly, given one U|0, 1], we can split it as in (ii) into infinitely many
independent U[0, 1]s. From each, we can generate a Brownian motion by
(iii), giving infinitely many independent Brownian motions.



Q2. (i) The It6 isometry states that for f € H? :== H?(0,T) :=
{f: Bl f2(w, t)dt] < o0},

/fwudB /fwudu]

(ii) Conditional Ité isometry. For 0 < s <t < T,

/f2wu)dB)|}" /wiuduU:]

Proof. 1t suffices to show that for all A € Fj,

A P, waB.)?) = BIA) [ £ 0]

This follows from the unconditional It6 isometry, applied to the integrand

g(w,u) = fLa(w)lsq(u).
(iii) For s < t, M; := (J! f(w,u)dBy,)? — [ f*(w,u)du

BIE) = B[+ [ 1E] = [ - B 2l F)

= B[ fudB. 12 £udBIEL[ fudBAF [ fudB IR [ f2duEL[ f2aul)

The first and fourth terms give M. The third and fifth terms cancel, by
the conditional It6 isometry (ii). The second factor in the second term in-
volves an Ito integral, which (for an integral f € H?) is a martingale, so has
constant expectation, which is 0 on taking ¢ = s, so the second term is 0.
Combining, the RHS is M, which proves that M is a martingale.

(iv) Taking f =1 gives M; := B? — t is a martingale.
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