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Ch. V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE.

§1. Quadratic Variation.
A partition πn of [0, t] is a finite set of points tni such that 0 = tn0 < tn1 <

. . . < tn,k(n) = t; the mesh of the partition is |πn| := maxi(tni − tn,(i−1)), the
maximal subinterval length. We consider nested sequences (πn) of partitions
(each refines its predecessors by adding further partition points), with |πn| →
0. Call (writing ti for tni for simplicity)

πnB :=
∑
ti∈πn

(B(ti+1)−B(ti))
2

the quadratic variation of B on (πn). The following classical result is due to
Lévy (in his book of 1948); the proof below is from [Pro], §I.3.
Theorem (Lévy). πnB → t (|πn| → 0) in mean square.
Proof.

πnB−t =
∑
ti∈πn

{(B(ti+i−B(ti))
2−(ti+1−ti)} =

∑
i

{(∆iB)2−(∆it)} =
∑
i

Yi,

say, where since ∆iB ∼ N(0,∆it), E[(∆iB)2] = ∆ti, so the Yi have zero
mean, and are independent by independent increments of B. So

E[(πnB − t)2] = E[(
∑
i

Yi)
2] =

∑
i

E[Y 2
i ],

as variance adds over independent summands. Now as ∆iB ∼ N(0,∆it),
(∆iB)/

√
∆it ∼ N(0, 1), so (∆iB)2/∆it ∼ Z2, where Z ∼ N(0, 1). So Yi =

(∆iB)2 −∆it ∼ (Z2 − 1)∆it,

E[(πnB − t)2] =
∑
i

E[(Z2 − 1)2](∆it)
2 = c

∑
i

(∆it)
2,

writing c for E[(Z2 − 1)2], Z ∼ N(0, 1), a finite constant. But since∑
i

(∆it)
2 ≤ max

i
∆it.

∑
i

∆it = |πn|.t,

E[(πnB − t)2] ≤ c.t.|π|n → 0 (|πn| → 0). //

Note. 1. From convergence in mean square, one can always extract an a.s.
convergent subsequence.
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2. The conclusion above extends in full generality to a.s. convergence, but
an easy proof needs the reversed mg convergence theorem (omitted).
3. There is an easy extension to a.s. convergence under the extra restriction∑

n |πn| <∞, using the Borel-Cantelli lemma and Chebychev’s inequality.
4. If we consider the theorem over [0, t+dt], [0, t] and subtract, we can write
the result formally as

(dBt)
2 = dt.

This can be regarded either as a convenient piece of symbolism, or acronym,
or as the essence of Itô calculus, to which we turn below.
Background on Other Integrals.

For simplicity, we fix T < ∞ and work throughout on time-set [0, T ] (in
financial applications, T is the expiry time, when – or by when – financial
derivatives such as options to buy or sell expire.

We want to define integrals of the form

It(f)(ω) =

∫ t

0

f(s, ω)dBs,

with suitable stochastic processes f as integrands and BM B as integrator.
Remark. We first learn integration with x as integrator, to get

∫ t
0
f(x)dx, first

as a Riemann integral (this is just the ‘Sixth Form integral’ in the ‘epsilon’
language of undergraduate mathematics), then as the Lebesgue integral (bet-
ter, as more general, and easier to manipulate, thanks to the monotone and
dominated convergence theorems, etc.). Later, e.g. in handling distribution
functions, which may have jumps, we learn

∫ t
0
f(x)dF (x) for F monotone.

One can extend this by linearity to F a difference of two monotone functions
– a function locally of finite variation, FV. Again, such integrals

∫ t
0
fdF

come in two kinds, Riemann-Stieltjes (R-S) and Lebesgue-Stieltjes (L-S). If
we want

∫ t
0
fdF to exist for all continuous f – as we do – then one needs F

to be FV (see e.g. [Pro], Th. 52 of I.7 – though see [Mik], §2.1 for the sur-
prising lengths to which one can push the R-S integral). Now BM has finite
quadratic variation, so infinite ordinary variation. So one needs something
new to handle BM as an integrator.
§2. Itô Integral.

We have our filtration (Ft) on Ω, where Ft handles randomness up to
time t, and the Borel σ-field B (the smallest containing the intervals) to han-
dle the time-interval [0, T ]. Write Ft × B for the smallest σ-field containing
all A × B, where A is Ft-measurable and B is B-measurable. Call f(., .)
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measurable if it is FT ×B- measurable and adapted if f(t, .) is Ft-measurable
for each t ∈ [0, T ]. Finally, write H2 = H2[0, T ] for the class of measurable
adapted f satisfying the integrability condition

E[

∫ T

0

f 2(t, ω)dt] <∞.

For (a, b] ⊂ [0, T ], f = I(a,b), the only candidate for I(f) :=
∫
fdB is

I(f)(ω) =

∫ b

a

dBt = Bb −Ba.

Similarly for other kinds of interval, (a, b], [a, b], [a, b), since Bt is continuous.
Next, integration should be linear, so I should extend from indicators

to simple functions by linearity. Write H2
0 for the class of simple square-

integrable functions – those f of the form

f(t, ω) =
n−1∑
i=0

ai(ω)I(ti < t ≤ ti+1)

with ai F(ti)-measurable, E(a2i ) < ∞ and 0 = t0 < . . . < tn = T . The only
plausible candidate for It(f) for f ∈ H2

0 is

It(f)(ω) =
n−1∑
i=0

ai(ω)(B(t ∧ ti+1)−B(t ∧ ti)).

By continuity of Bt in t, It(f) is continuous in t. Next, for u ≥ s, E[Bu|Fs] =
Bs as B is a mg, while for u ≤ s, E[Bu|Fs] = Bu as then Bu is known at
time s. Combining,

E[Bu|Fs] = B(min(u, s)).

Thus for s ≤ t,

E[It(f)(ω)|Fs] =
n−1∑
i=0

ai(ω)(B(s ∧ t ∧ ti+1)−B(s ∧ t ∧ ti),

which – as s ≤ t – is

n−1∑
i=0

ai(ω)(B(s ∧ ti+1)−B(s ∧ ti)),
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which is Is(f). This says that It(f) is a mg. So, from the mg property, the
products of increments over disjoint intervals have zero mean (all relevant
expectations exist as we are assuming square-integrability). Consider

E[It(f)2] = E[(
k−1∑
i=0

ai(B(ti+1)−B(ti))+ak(B(t)−B(tk))
2] (tk ≤ t < tk+1).

Expand out the square; the cross-terms have zero expectation, leaving

E[
k−1∑
i=0

a2i (B(ti+1)−B(ti))
2+a2k(B(t)−B(tk))

2] =
k−1∑
i=0

E(a2i )(ti+1−ti)+E(a2k)(t−tk),

which is
∫ t
0
E(f 2(s, ω))ds as f 2 is a2i on (ti, ti+1]. Combining:

Proposition.
For f ∈ H2

0 a simple function, and (Itf)(ω) defined as above,
(i) Itf is a continuous martingale,
(ii) E[(Itf)(ω)2] = E[

∫ t
0
f 2(s, ω)ds] (Itô isometry).

One seeks to extend It from simple functions f ∈ H2
0 to general f ∈ H2

(an extension analogous to the extension of the Lebesgue integral from simple
to measurable functions, in the most basic non-random measure-theoretic set-
up). It is not at all obvious, but it is true, that – with H2

0 , H2 regarded as

Hilbert spaces with the norm ‖f‖ := (
∫ T
0
f 2(s, ω)ds)1/2 – H2

0 is dense in H2

- that is, each f ∈ H2 is the limit in norm of an approximating sequence
fn ∈ H2

0 . It is further true that the map It extends from H2
0 to H2 via

(Itf)(ω) := limn→∞(Itfn)(ω)

(the limit is in the Hilbert-space norm), and that the limit above does not
depend on the particular choice of approximating sequence. That is:
Proposition.

For f ∈ H2 and (Itf)(ω) defined by approximation as above:
(i) (Itf)(ω) is a continuous martingale,
(ii) The Itô isometry E[(Itf)(ω)2] = E[

∫ t
0
f 2(s, ω)ds holds.

We must refer to a rigorous measure-theoretic treatment for details of the
proof. Full accounts are in [R-Y], IV, [K-S], Ch. 3. See also [Pro], Ch. II.

We now call Itf the Itô integral of f ∈ H2, and use the suggestive Leibniz
integral sign (which dates from 1675):

(Itf)(ω) =

∫ t

0

f(s, ω)dB(s, ω) or

∫ t

0

fsdBs (0 ≤ t ≤ T ).
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An alternative notation is

(f.B)t :=

∫ t

0

fsdBs.

Predictability. We used (ti, ti+1] to ensure left-continuity, so predictability.
The distinction is not critical with Brownian motion or a continuous mg in-
tegrator, but it is critical with a general semimg integrator.

The appropriate topology (or convergence concept, in metric-space sit-
uations as here) is that of uniform convergence in probability on compact
time-sets (ucp). The simple predictable functions (class S) are dense in the
adapted càglàd functions (class L) in the ucp topology ([Pro], II.4), and this
allows the approximation and extension results we need (and assume).
An Example.

We calculate
∫ t
0
BsdBs, using Brownian motion both as (continuous, so

previsible) integrand and as integrator. Take a sequence of partitions πn with
mesh |πn| → 0, and write ti for the partition points tni of πn, as above. The
approximation properties sketched above allow us to identify

∫ t
0
BsdBs with

the limit of ∑
ti∈πn

B(ti)(B(ti+1 −B(ti)).

But this is∑ 1

2
(B(ti+1)+B(ti))(B(ti+1)−B(ti))−

∑ 1

2
(B(ti+1)−B(ti))(B(ti+1)−B(ti)).

The first sum is 1
2

∑
(B(ti+1)

2−B(ti)
2), which telescopes to 1

2
B(t)2 (B(0) =

0). The second sum is 1
2

∑
(∆iB)2, which tends to1

2
t by Lévy’s theorem on

the quadratic variation of BM . Combining:∫ t

0

BsdBs =
1

2
B2
t −

1

2
t.

This formula of course differs dramatically from that for ordinary (Newton-
Leibniz) calculus, or its Riemann-Stieltjes or Lebesgue-Stieltjes extensions.
The role of the second term – the correction term or Itô term – illustrates
both the contrast between the Itô and earlier integrals and the decisive in-
fluence of the quadratic variation on the Itô integral.
Quadratic Variation. For continuous semimartingales X, the quadratic vari-
ation process 〈X〉 = (〈X〉t : t ≥ 0) is defined by

〈X〉 = X2 − 2

∫
X−dX
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(of course X− = X when X is continuous, as here). Alternatively, X2 is a
submg, and then

X2 = 〈X〉+ 2

∫
X−dX

is the Doob (or Doob-Meyer) decomposition of X2 into an increasing previs-
ible process 〈X〉 and a mg 2

∫
X−dX.

For general (not necessarily continuous) mgs X, the quadratic variation
[X] involves the jumps ∆Xt of X also. Then if [X]c is the continuous part
of the increasing process [X],

[X]t = [X]ct +
∑
0≤s≤t

(∆Xs)
2,

and if Xc is the continuous mg part of X in its semimg decomposition,

〈Xc〉 = [Xc] = [X]c.

Both 〈X〉 and [X] are shorthand for 〈X,X〉 and [X,X]. Extend to different
X and Y by polarization,

〈X, Y 〉 :=
1

4
(〈X + Y,X + Y 〉 − 〈X − Y,X − Y 〉)

(likewise for [., .]); both are locally FV, so are semimgs ([Pro], II.6).
Product Rule.

The quadratic covariation [X, Y ] is, by polarization,

[X, Y ] = XY −
∫
X−dY −

∫
Y−dX.

Rearranging: for X, Y semimgs, so is XY , and then

XY =

∫
X−dY +

∫
Y−dX + [X, Y ].

This is the integration-by-parts formula, or product rule. It is the principal
special case of Itô’s formula (below) – to which it is in fact equivalent.

With H, K previsible integrands and X, Y semimg integrators, we can
form both the stochastic integrals H.X =

∫
HdX, K.Y =

∫
KdY . We can

then form the (square-)bracket processes, for which

[H.X,K.Y ]t =

∫
HsKsd[X, Y ]s;
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in particular,

[H.X,H.X]t =

∫
H2
sd[X,X]s or [H.X]t =

∫
H2
sd[X]s.

For Brownian motion, [B]t = 〈B〉t (as there are no jumps) = t (by Lévy’s
result on quadratic variation). So specialising,

〈
∫
fdB〉 =

∫ t

0

f 2
s ds, 〈

∫
fsdBs,

∫ t

0

gsdBs〉 =

∫ t

0

fsgsds.

§3. Itô’s Formula
The change-of-variable formula (or chain rule) of ordinary calculus ex-

tends to the Lebesgue-Stieltjes integral, and tells us that for smooth f (∈ C1)
and continuous A, of FV (on compacts),

f(At)− f(A0) =

∫ t

0

f ′(As)dAs.

(This of course does not apply to
∫ t
0
BsdBs = 1

2
B2
t − 1

2
t, but there the integral

is Itô, not Lebesgue-Stieltjes.)
Rather less well-known is the extension to A only right-continuous:

f(At)− f(A0) =

∫ t

0+

f ′(As−)dAs +
∑
0<s≤t

{f(As(−f(As−)− f ′(As−)∆As}.

One thus seeks a setting capable of handling both the last two displayed
results together.
Theorem (Itô’s Formula). For X a semimartingale and f ∈ C2, then
f(X) is also a semimartingale, and

f(Xt)− f(X0) =

∫ t

0+

f ′(Xs−)dXs +
1

2

∫ t

0+

f ′′(Xs−)d[X,X]cs

+
∑
0<s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs}.

First, we note the special case for X continuous.
Theorem (Itô’s Formula). For X a continuous semimartingale and f ∈
C2, f(X) is also a continuous semimartingale, and

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d[X,X]s.
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Corollary. If X = X0 + M + A is the decomposition of the continuous
semimartingale X, that of f(X) is

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dMs + {
∫ t

0

f ′(Xs)dAs +
1

2

∫ t

0

f ′′(Xs)d[M ]s}.

Proof. Let A be the class of C2 functions f for which the desired result holds.
Then A is a vector space. But A is also closed under multiplication, so is an
algebra. Indeed, if f , g ∈ A, write Ft, Gt for the semimgs f(Xt) and g(Xt)
and use the product rule. If X = X0 + M + A is the decomposition of X
into a (continuous) local mg M and a BV process A, the continuous local
mg part of F = f(X) is

∫
f ′(Xs)dMs. So

[F,G]t = [F cm, Gcm]t = [

∫ .

0

f ′(Xs)dMs,

∫ .

0

g′(Xs)dMs]t,

which by above is ∫ t

0

f ′(Xs)g
′(Xs)d[M,M ]s.

The product rule now says that

FtGt − F0G0 =

∫ t

0

FsdGs +

∫ t

0

GsdFs +

∫ t

0

(f ′g′)(Xs)d[M ]s.

As Itô’s formula holds for f (by assumption),

dFt = f ′(Xt)dXt +
1

2
f ′′(Xt)d[M ]t,

and similarly for g. Substituting, FtGt − F0G0 is∫ t

0

{Fsg′(Xs)+f
′(Xs)Gs}dXs+

1

2

∫ t

0

{Fsg′′(Xs)+2f ′(Xs)g
′(Xs)+f

′′(Xs)Gs}d[M ]s.

This says that Itô’s formula also holds for fg. So A is an algebra, and a
vector space. Since A contains f(x) = x, A contains all polynomials.

One can now reduce from the local-mg to the mg case by a localization
argument, and extend from A to C2 by an approximation argument. For
details, see [R-W2], IV.32 (and for discontinuous X, VI.39). //
Note. 1. Higher dimensions. For vector functions f = (F1, . . . , fn) and vector
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processes X = (X1, . . . , Xn), we use the Einstein summation convention and
Dif for ∂f/∂i. Then the Itô formula extends (with much the same proof) as

f(Xt)− f(X0) =

∫ t

0

Dif(Xs)dX
i
s +

1

2

∫ t

0

Dijf(Xs)d[X i, Xj]s.

2. With f(x, y) = xy, we then recover the product rule (integration-by-parts
formula). So Itô’s formula and the product rule are equivalent.
3. So the class of semimgs is closed under C2 functions: a powerful – and
highly non-linear – closure property.
4. Differential Notation. In the one-dimensional case, we may re-write Itô’s
formula in shorthand form using differential rather than integral notation as

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t.

The left is called the stochastic differential of f(X). So the above gives the
stochastic differential of f(X) in terms of the stochastic differential dX of X
and the quadratic variation [X,X] or [X] of X.
5. Formalism. For the continuous case, we can obtain Itô’s formula from
Taylor’s formula in differential form, if we use these rules for differentials:

dX idXj = d[X i, Xj], dX idXjdXk = 0, dXdV = 0

whenever V has FV. In particular, for X = B BM in one dimension,

dBi
tdB

j
t = 0 (i 6= j), (dBi

t)
2 = dt, dBdV = 0 V of finite variation on compacts.

The interpretation here is that for i 6= j, the Brownian increments dBi and
dBj are independent with zero mean, so E[dBi

tdB
j
t ] = E[dBi

t].E[dBj
t ] =

0.0 = 0, while for i = j the earlier symbolism (dBt)
2 = dt becomes (dBi

t)
2 =

dt. The formalism above works well, and is flexible and reliable in practice.
One can also do stochastic calculus for Lévy processes; see Applebaum

[A]. Apart from BM, the prime case is the Poisson process; see Kingman [K].

§4. Weak convergence
Convergence in Distribution. If cn, c are constants, and cn → c, then regard-
ing cn, c as random variables one should have cn → c in any sense of conver-
gence of random variables – in particular, for convergence in distribution. If
Fcn , Fc are their distribution functions, one has Fcn(x) → Fc(x) as n → ∞
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for all x 6= c – the point where the limit function has a jump. For a set A,
write Ā for its closure, Ao for its interior, ∂A := Ā\Ao for its boundary. With
Pn, P the corresponding probability measures, Pn((−∞, x]) → P ((−∞, x])
for all x /∈ ∂(−∞, c]. It turns out that this is the right definition of conver-
gence in distribution, as it generalizes – to d dimensions (random vectors),
and infinitely many dimensions (stochastic processes). We confine ourselves
here to processes with continuous paths (e.g. Brownian motion). We take the
(time) parameter set as [0, 1] for simplicity. If X is such a process, its paths
lie in C[0, 1], the space of continuous functions on [0, 1]. This is a metric
space under the sup-norm metric d(f, g) := sup{|f(t) − g(t)| : t ∈ [0, 1]}.
The Borel σ-field B = B(C([0, 1]) of C[0, 1] is the σ-field generated by the
open sets of C[0, 1] w.r.t. this metric. The distribution, or law, of a process
X on C[0, 1] is given by P (B) := P (X(.) ∈ B) for B ∈ B. If Xn, X are such
processes, with laws Pn, P , one says Xn → X in distribution, or in law, or
weakly, or Pn → P weakly, if

Pn(B)→ P (B) (n→∞) ∀B ∈ B with P (∂B) = 0.

It turns out that this is equivalent to∫
fdPn →

∫
fdP (n→∞) ∀f ∈ C[0, 1],

and also, by Prohorov’s theorem, to
(i) convergence of finite-dimensional distributions (clearly needed), and
(ii) tightness: for all ε > 0 there exists a compact set K such that Pn(K) >
1− ε for all n. For proof, see e.g. Billingsley [B].
Statistical Applications. These include the Kolmogorov-Smirnov (K-S) tests
for equality of two distributions F , G, in terms of the Kolmogorov-Smirnov
statistic Dn := sup{|Fn(.) − Gn(.)} of the distance between their empirical
distribution functions. In fact Dn has the same law as sup{B0(t) : t ∈ [0, 1]},
whereB is Brownian motion andB0 is the Brownian bridge: B0(t) := B(t)−t.
Similarly for many other functionals – Donsker’s Invariance Principle. This
is the dynamic form of the Central Limit Theorem (CLT).

Results of this type are very powerful, and useful in modern statistics.
For background, wee e.g. the books by van der Vaart [vdV] and by Giné and
Nickl [GinN].
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