LONDON TAUGHT COURSE CENTRE

MEASURE-THEORETIC PROBABILITY

EXAMINATION, 2013

Q1. The tail σ -field \mathcal{T} of a process $X = (X_n)$ is the sub- σ -field of $\sigma(X)$ invariant under changes to finitely many of the X_n .

Prove Kolmogorov's Zero-One Law: that if the X_n) are independent, the probability of a tail event is 0 or 1. (You may quote that, from the Carathéodory extension procedure, if a measure μ is extended from a field \mathcal{F}_0 to the generated σ -field \mathcal{F} , μ may be approximated on \mathcal{F} by its values on \mathcal{F}_0 in the sense that for any $A \in \mathcal{F}$ and $\epsilon > 0$ there is a set $A_0 \in \mathcal{F}_0$ such that $\mu(A\Delta A_0) < \epsilon$.)

If A_n are independent events, and $A := \lim A_n$ is the event that infinitely many of the A_n occur, deduce that A has probability 0 or 1.

State, without proof, when P(A) is 0 and when it is 1.

Q2. A function ϕ is *convex* on a set A if

$$\phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y) \qquad \forall \lambda \in [0, 1], x, y \in A.$$

Jensen's inequality states that

$$\phi(E[X]) \le E[\phi(X)]$$

for convex ϕ and random variables X with X, $\phi(X)$ both integrable. The conditional Jensen inequality states that for \mathcal{A} a σ -field, ϕ , X as above,

$$\phi(E[X|\mathcal{A}]) \le E[\phi(X)|\mathcal{A}].$$

(i) If $M = (M_t)$ is a martingale, and ϕ is a convex function such that each $\phi(M_t)$ is integrable, show that $\phi(M)$ is a submartingale.

(ii) If in (i) M is a submartingale, and ϕ is also non-decreasing on the range of M, show that again $\phi(M)$ is a submartingale.

(iii) Deduce that $B^2 = (B_t^2)$ is a submartingale.

(iv) Show that for $B = (B_t)$ Brownian motion, $B_t^2 - t$ is a martingale.

(v) Find the increasing process in its Doob-Meyer decomposition. Deduce that Brownian motion has quadratic variation t.

N. H. Bingham