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Q1. (a) If the random variable U has the uniform distribution U [0, 1] (U ∼
U [0, 1]): let Φ be the distribution function of the standard normal distribu-
tion N(0, 1). Then Φ is continuous and strictly increasing, and so has an
inverse function Φ−1, also continuous and strictly increasing. Then writing
Z := Φ−1U ,

P (Z ≤ x) = P (Φ−1(U) ≤ x) = P (U ≤ Φ(x)) = Φ(x)

(as Φ(x) ∈ (0, 1): this is the ‘probability integral transformation’). So,
writing

Zn := Φ−1(Un),

the Zn are independent (as the Un are) and standard normal (as above).
(b) For n ≥ 1 integer, write n = 2j + k, with j, k ≥ 0 integers and k < 2j.
Define

∆(t) := 2t (0 ≤ t ≤ 1

2
), 2(1− t) (

1

2
≤ t ≤ 1), 0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t), and use ∆ as mother wavelet to define
daughter wavelets

∆n(t) := ∆(2jt− k) (n = 2j + k),

the Schauder system (so ∆n has support the dyadic interval [k/2j, (k+1)/2j]).
Then with the appropriate normalisation constants

λ0 = 1, λn =
1

2
.2−j/2

the ∆n form a complete orthonormal system (cons) on L2[0, 1]. Then by the
Paley-Wiener-Zygmund (PWZ) theorem, if

B(t) :=
∞∑
n=0

λnZn∆n(t),

B = (B(t)) is a Brownian motion, the series being uniformly convergent on
[0, 1], a.s.
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Q2. The uniform distribution U [0, 1] corresponds to an infinite sequence of
independent coin-tosses: if the εn are independent, taking values 0, 1 with
probability 1

2
, and

U :=
∞∑
n=1

εn,

then U ∼ U [0, 1], and conversely, if U ∼ U [0, 1], its dyadic expansion coeffi-
cients εn as above are independent coin-tosses.

As in the Cantor diagonalisation procedure, showing that the rationals
are countable, we can split the single sequence (εn) of independent coin-tosses
into infinitely many sequences (still necessarily of independent coin-tosses).
As in Q1, this gives us a Brownian motion.

We can repeat this splitting process, and split each sequence so obtained
into infinitely many sequences also. Each can be used to generate a Brownian
motion, as above, giving the required infinitely many independent Brownian
motions.

So although on the face of it the PWZ theorem needs as its ‘raw mate-
rial’ an infinite sequence of standard normals (equivalently, uniforms), one
can ‘economise’, and use only one (uniform, say).

Q3. The Brownian bridge B0 on [0, 1] is obtained from Brownian motion B
by

B0(t) := B(t)− tB(1).

So, as λ0 = 1 and both Z0 and B(1) are standard normal, the tB(1) term here
may be taken as the n = 0 term in the PWZ expansion. Thus the Brownian-
bridge case can be obtained from the Brownian case above by dropping all
the n = 0 terms.

Q4. As with everything else in Analysis, which deals with real numbers
(whose decimal expansions terminate or recur iff the number is rational, and
‘rationals are flukes’ – only countably many), one has to truncate, to conform
to the limitations of computer power or the needs of the investigation. This
is not problematic here, as the PWZ expansion is uniformly convergent, a.s.
– so the truncation needed at one point will suffice for all.
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