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MEASURE-THEORETIC PROBABILITY

Q1. A.
(i) PX+Y (s) =

∑∞
n=0 P (X + Y = n)sn. P (X + Y = n) =

∑n
k=0 P (X = k, Y = n − k) =∑n

k=0 P (X = k)P (Y = n− k), by independence. Substitute, and put j := n− k to get

PX+Y (s) =
∞∑

j=0

∞∑

k=0

P (X = k).P (Y = j).sj .sk

=
∞∑

k=0

P (X = k)sk.

∞∑

j=0

P (Y = j).sj = PX(s).PY (s).

(ii) PX(s) =
∑∞

n=0 e−λ(λn/n!).sn = e−λ
∑∞

n=0(λs)n/n! = e−λ.eλs = e−λ(1−s).
(iii) Combining, PX+Y (s) = e−λ(1−s).e−µ(1−s) = e−(λ+µ)(1−s). So X + Y ∼ P (λ + µ).
(iv) EX =

∑∞
n=0 n.P (X = n). One can evaluate the sum directly, but the easiest way to

get the sum is to differentiate the generating function and evaluate it at s = 1 (proof: one
can take the d/ds inside the sum; d(sn)/ds = nsn−1; this gives the factor n on putting
s = 1). As d[e−λ(1−s)]/ds = λe−λ(1−s), this gives EX = λ: the mean of a Poisson ran-
dom variable is its parameter (its variance is λ too, but we won’t need this here). Then
E(X + Y ) = EX + EY = λ + µ follows by linearity of expectation E (expectation is
integration, and integration is linear).
B.
(i) X = (Xt) is a Ppp(λ) if for any measurable set A (equivalently, for any interval A), the
number X(A) of points of the point process X in A is Poisson distributed with parameter
λ|A|, X(A) ∼ P (λ|A|), and the numbers of points of X in disjoint sets are independent.
(ii) If X ∼ Ppp(λ), Y ∼ Ppp(µ), then for any A, X(A) ∼ P (λ|A|), Y (A) ∼ P (µ|A|), and
these are independent as X, Y are independent. So (X +Y )(A) ∼ P ((λ+µ)|A|), by above.
Also, for disjoint sets A, B, X(A), X(B) are independent as X is Poisson, and similarly so
are Y (A), Y (B), while both X-counts are independent of both Y -counts as X and Y are
independent. Combining, (X + Y )(A) and (X + Y )(B) are independent. This completes
the proof that X + Y is Ppp(λ + µ).
(iii) Given that X + Y is a Ppp, its parameter is the constant ν in E(X + Y )(A) = ν|A|.
But E(X + Y )(A) = EX(A) + EY (A) = λ|A|+ µ|A|, so ν = λ + µ.
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Q2. As X is a linear combination of independent Gaussian processes X is a Gaussian
process (continuous as B1, B2 are continuous), and X has zero mean as B1, B2 have
zero mean. To identify X as standard Brownian motion, it thus suffices to show that its
covariance function is min(s, t), as this is the signature of Brownian motion.

For s, t ≥ 0,

E[XtXt+s] = (σ2
1 + σ2

2)−1.E[(σ1B1(t) + σ2B2(t))(σ1B1(t + s) + σ2B2(t + s))].

On the right, replace each Bi(t + s) by Bi(t) + (Bi(t + s) − Bi(t)) (the point being that
the second term, the increment, is independent of the first, as Brownian motion has inde-
pendent increments). Then multiply up. This splits the right into the sum of two terms,

(σ2
1 + σ2

2)−1.E[(σ1B1(t) + σ2B2(t))2]

and

(σ2
1 + σ2

2)−1.E[(σ1B1(t) + σ2B2(t))(σ1[B1(t + s)−B1(t)] + σ2[B2(t + s)−B2(t)])].

Multiply out the square in the first term. The cross-term gives 0, as B1, B2 are indepen-
dent and zero-mean: E(B1(t)B2(t)) = EB1(t).EB2(t) = 0.0 = 0. The squared terms give
σ2

i E[Bi(t)2] = σivar(Bi(t) = σ2
i t. So the first term is t. The second term is zero, using

independence of Bi(t) and [Bi(t + s) − Bi(t)], and of B1, B2. Combining, the RHS is t.
This is the smaller of the two time-points t, t + s for s ≥ 0, so in general we get min(s, t).
That is, cov(Xs, Xt) = min(s, t), and X is standard Brownian motion, as required.
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