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Abstract. The in�nite combinatorics here give statements in which,
from some sequence, an in�nite subsequence will satisfy some condition �
for example, belong to some speci�ed set. Our results give such statements
generically �that is, for �nearly all�points, or as we shall say, for quasi all
points �all o¤ a null set in the measure case, or all o¤ a meagre set in the
category case. The prototypical result here goes back to Kestelman in 1947
and to Borwein and Ditor in the measure case, and can be extended to the
category case also. Our main result is what we call the Category Embed-
ding Theorem (CET), which contains the Kestelman-Borwein-Ditor Theorem
(KBD) as a special case. Our main contribution is to obtain functionwise
rather than pointwise versions of such results. We thus subsume results in
a number of recent and related areas, concerning e.g. additive, subadditive,
convex and regularly varying functions.
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1 Introduction and motivation

The theory of regular variation was initiated by Jovan Karamata, to whom
this paper is dedicated, in 1930 and developed by himself and his pupils till
1963, as well as by others. This subject is given monograph treatment in [5].
The main result of the subject is the Uniform Convergence theorem (UCT)
of slow variation is as follows (see e.g. [5] Ch. 1).
UCT: If ` : R+ ! R+ satis�es

`(�x)=`(x)! 1 (as x!1) 8� > 0

and ` is measurable (or has the property of) Baire �then the convergence is
uniform on compact �-sets in R+: Two points need emphasis here.
(i) Some regularity on ` is required. For counterexamples showing this,

see [5] e.g. Th.1.2.2.
(ii) So `measurable/Baire are su¢ cient for UCT. But neither is necessary,

and neither includes the other.
The principal foundational question in the theory of regular variation (ex-

plicitly raised in [5] p. 11) is the search for a minimal common generalization
of measurability and the Baire property to serve as a necessary and su¢ -
cient condition on l in UCT. This question has now been fully answered; see
[6]. The answer involves in�nite combinatorics, hence the title of this paper.
This is the subject matter of Section 2,3. One consequence of our approach
is that it reveals the Baire case, rather than the more traditional measurable
case, to be the more important. One can reduce the measurable case to the
Baire case by changing from the Euclidean to the density topology.
The arguments �x in the de�nition above refer to the multiplication group

of positive reals. The question arises of the extent to which the theory can be
developed in more general settings �Euclidean space Rd; Hilbert space, suit-
able topological groups etc. The question is raised explicitly in [5] Appendix
1, where the (then rather sparse) literature was reviewed.
In the two decades since [5] a great deal of work has been done on such

questions. This has been largely motivated by extreme value theory within
probability theory. For extremal value theory in one dimension see [5] Section
8.11; the motivation here is the greatest �ood height in a set of readings, or
the greatest wind-speed, etc. since it is the maximum that is most damaging
or dangerous, or in a �nancial context the highest (or lowest) stock price.
Extensions to higher dimensions are natural: in climatic contexts because
one may have data from a number of recording stations, and in the �nancial
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context because one may hold portfolios of stocks to diversify one�s risks.
In�nite-dimensional extensions are equally natural, one classic example being
the di¤erence in pro�les between the sea dykes protecting the Netherlands
and the sea level. There are a number of recent monographs on such higher-
dimensional theory, including e.g. de Haan and Fereira [29], Resnick [39],[40],
and in the �nancial case Balkema and Embrechts [3].
The view point of [12] is that normed groups provide a suitable setting in

which a uni�ed theory of regular variation can be developed. This permits
the same kind of in�nite combinatorics to play the key role. We work in
Section 4 in the setting of function spaces over normed groups. Similarly in
Section 5 we extend to these settings topological results on deformation, the
homotopy theory of [10].
Equally relevant to the foundations of regular variation is the question of

when
k(xy) = k(x)k(y)

implies that k(x) � x� for some � (called the index of regular variation, see
e.g. [5], Section 1.4). This can be reformulated as when an additive function
�i.e. one satisfying

f(x+ y) = f(x) + f(y); 8x; y 2 R

� satis�es f(x) � cx for some c 2 R. For these, one has a dichotomy �
such functions are either very good or very bad. Additivity and continuity
clearly give f(x) = cx; so this question reduce to one of automatic continuity,
for additive functions. Regularity conditions discriminating between the two
extremes of behaviour may be given in either measure or category forms;
here again it turns out that the underlying explanation hinges on the same
kind of in�nite combinatorics as in the UCT question; a uni�ed treatment
is given in [7], including as special cases classical results of Steinhaus and
Ostrowski. Additivity may be weakened to subadditivity, with

f(x+ y) � f(x) + f(y);

the subadditive case is treated along similar lines in [8]. It may also be
weakened to (mid-point) convexity

f(
1

2
(x+ y)) =

1

2
(f(x) + f(y));
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for which see [9], and yet again in�nite combinatorics underpin regularity
considerations.
The recurring theme in these examples is additive structure, as all of

the above de�ning functional equations/inequalities may be restated in the
language of normed groups, and of normed vector spaces in particular.
Thus the motivation and theme of this paper rests on extending the re-

curring feature of combinatorics to function spaces in general.
The advantage of applying Baire category methods �and thereby making

the Baire case the primary one, rather than the classical measurable case �
is that it shows the natural setting here to be Baire spaces.
It is category questions that are crucial, not questions of compactness

or local compactness. This assists the generalization from �nite dimensions
to in�nite dimensional settings: Hilbert space, for example, is not locally
compact (the unit ball is not compact in in�nitely many dimensions), but is
Baire so our methods do apply to it.

2 Preliminaries

We shall be concerned here with both measure and category (cf. [38]), and
need concepts of smallness for each. On the measure side, we deal with the
class L of (Lebesgue) measurable sets, and interpret small sets as (Lebesgue)
null sets; on the category side we deal with the class Ba of sets with the Baire
property (brie�y, Baire sets), and interpret small sets as meagre sets (those
of the �rst category). We use quasi everywhere (q.e.), or for quasi all points,
to mean for all points o¤ a meagre set. For � in L or Ba; we say that P 2 �
holds for generically all t if ft : t =2 Pg is null/meagre according as � is L or
Ba:
Our starting-point is the following result, due to Kestelman [31] and to

Borwein and Ditor [13]. This exempli�es the in�nite combinatorics of the
title, but concerns scalars, rather than functions.

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null/Baire and non-
meagre, then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

This result (brie�y, the KBD theorem) is a corollary of a topological re-
sult, the Category Embedding Theorem (CET), given in one form in Section
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3 below and in another form in [11]. The starting point there is that hn(t) :=
t+ zn is a sequence of autohomeomorpisms (or, self-homeomorphisms) of the
line which converge uniformly to the identity.
Our object here is to give a uni�ed treatment of such in�nite combina-

torics on function spaces in general, thus providing a common perspective
on all these results. In Section 3 below we give the CET, in what we call
its conjuction form (the motivation being the need to handle bilateral shifts,
t� zm and t+ zm: In Section 4 we work in normed groups, as in [12], extend-
ing the bitopological approach of [11] to this more general setting. What
motivates such a broader context is the re-interpretation of a sequence of
autohomeomorphisms hn(t) uniformly converging to the identity as giving
rise to null function sequences zn(t) := hn(t) � t (converging in supremum
norm to zero) which need not be constant as in the KBD Theorem. In Sec-
tion 5 we give generic forms of some results appearing in Kuczma [32], Ch.
IX, which we term re�ection theorems, and we close with a treatment in this
vein of a genericity result, due to Császár [18], which makes explicit the ideas
implicit in arguments presented in [32], IX.7. Section 6 illustrates how the
combinatorics may be applied to deduce automatic continuity of (mid-point)
convex functions.
As in [11] we will need the density topology (introduced in [28], [25], [36]

and studied also in [26] � see also [17], and for textbook treatments [30],
[34]). Recall that for T measurable, t is a (metric) density point of T if
lim�!0 jT \ I�(t)j=� = 1; where I�(t) = (t � �=2; t + �=2). By the Lebesgue
Density Theorem almost all points of T are density points ([27] Section 61,
[38] Th. 3.20, or [24]). A set U is d-open (open in the density topology) if
each of its points is a density point of U: We mention three properties:
(i) The density topology (d-topology) is �ner than (contains) the Euclid-

ean topology ([30], 17.47(ii)).
(ii) A set is Baire in the density topology i¤ it is (Lebesgue) measurable

([30], 17.47(iv)).
(iii) A function is d-continuous i¤ it is approximately continuous in Den-

joy�s sense ([19]; [34], p.1, 149).
The reader unfamiliar with the density topology may �nd it helpful to

think, in the style of Littlewood�s First Principle, of basic open sets as being
intervals less some measurable set. See [33] Ch. 4, [42] Section 3.6 p.72.
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3 Conjunction Category Embedding Theorem

We recall a de�nition from [11] and then formulate two variants. The �rst two
de�nitions refer to homeomorphisms which form a sequence of �approxima-
tions�to the identity in the sense of (approx) below, while the third introduces
a relaxation. We follow set-theoretic usage and write ! := f0; 1; 2::g:

De�nition (weak category convergence). A sequence of autohomeo-
morphisms hn of a topological spaceX satis�es the weak category convergence
condition if:
For any non-empty open set U; there is an non-empty open set V � U

such that, for each k 2 !;\
n�k

V nh�1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre set Mk in X such that,
for t =2Mk;

t 2 V =) (9n � k) hn(t) 2 V: (approx)

We say that the homeomorphisms hn satisfy the weak category convergence
conjunctively if, for each k 2 !;\

n�k

V n[h�12n (V ) \ h�12n+1(V )] is meagre. (wccc)

Equivalently, for each k 2 !; there is a meagre set Mk in X such that, for
t =2Mk;

t 2 V =) (9n � k) h2n(t) 2 V and h2n+1(t) 2 V:
Finally, we formulate a local version of (wcc) appropriate to the case

X = R (but generalizable to X a group in the context of Section 3 below),
which allows some rescaling of hn: Say that the sequence of homeomorphisms
hn satis�es the re-scaled weak category convergence condition at u if for every
open set U with u 2 U there is an open set V with u 2 V � U and � = �u > 0
such that, for each k 2 !;\

n�k

�V nh�1n (V ) is meagre. (rwcc)

Equivalently, for each k 2 !; there is a meagre set Mk in X such that, for
t =2Mk;

t 2 �V =) (9n � k) hn(t) 2 V;
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or, writing �s for t and �Nk for Mk; for each k 2 !; there is a meagre set Nk
in X such that, for s =2 Nk;

s 2 V =) (9n � k) hn(�s) 2 V:

Remarks. 1. In the case of the line with Euclidean topology the func-
tions hn(t) = t � zn; with sign selected according to parity, are autohomeo-
morphisms. The condition (wccc) is used to deduce the bilateral embedding
result

ft� zm; t+ zm : m 2Mtg � T:

Multiple conjunction forms, k-fold ones, may also be considered by working
modulo k rather than 2 in (wccc).
2. Note that t 2 lim suph�1n (T ) :=

T
k2!

S
n�k h

�1
n (T ) i¤ for some in�nite

Mt � !
fhm(t) : m 2Mtg � T:

The theorem below implies that for Baire T the sets lim suph�1n (T ) and T
are equal modulo a meagre set.
3. Taking h2n+1 = h2n reduces (wccc) to (wcc).
4. Consider the a¢ ne homeomorphisms

An(t) = �nt+ zn

with �n � 2� > 0 and zn ! 0: For any symmetric interval I� about the
origin of radius �; we have

�nI� + zn � 2�I� + zn = I2�� + zn:

For n large enough we have zn 2 I��; so

�nI� + zn � I��;

i.e.
An[I�] � I��; so that �I�nAn[I�] is meagre.

Thus A�1n satis�es (rwcc) at the origin.
Note that if M is meagre then T := I�nM is Baire non-null, and we have

An[T ] = An[I�nM ] � �I�nAn[M ];

so
�TnAn[T ] is meagre.
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5. When X is a group one may interpret the condition (rwcc) as referring
to group multiplication by �:

Theorem 1 (Category Embedding Theorem - Conjunction form).
Let X be a Baire space. Suppose given homeomorphisms hn : X ! X which
satisfy the weak category convergence condition conjunctively. Then, for any
Baire set T; for quasi all t 2 T there is an in�nite set Mt such that

fhm(t); hm+1(t) : m 2Mtg � T:

Proof. We may assume that T = UnM with U open, non-empty and
M meagre. Consider homeomorphisms hn : X ! X satisfying the weak
category convergence condition conjunctively. By assumption, there is V �
U satisfying (wccc).
Since the functions hn are homeomorphisms, the set

M 0 :=M [
[
n

h�1n (M)

is meagre. Put

W = h(V ) :=
\
k2!

[
n�k

V \ [h�12n (V ) \ h�12n+1(V )] � V � U:

Then V \W is co-meagre in V: Indeed

V nW =
[
k2!

\
k�n

V n[h�12n (V ) \ V nh�12n (V )];

which by assumption is meagre.
Let t 2 V \ WnM 0 so that t 2 T: Now there exists an in�nite set Mt

such that, for m 2Mt, there are points v2m; v2m+1 2 V with t = h�12m(v2m) =
h�12m+1(v2m+1): Since h

�1
2m(v2m) = t =2 h�12m(M); we have v2m =2 M; and hence

v2m 2 T ; likewise v2m+1 2 T: Thus fh2m(t); h2m+1(t) : m 2 Mtg � T for t in
a co-meagre set, as asserted. �

The result above strengthens the Category Embedding Theorem of [11]
with almost the same proof. We close with a further strengthening obtained
by reworking the proof so as replace (wccc) with (rwcc).
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Corollary 1 (Locally rescaled CET). Let R be given a Baire topology
and let T be Baire. Suppose that hn are homeomorphisms satisfying (rwcc)
at 0: Then, for quasi all u 2 T and quasi all t 2 T near u (i.e in some open
set U with u 2 U), there is an in�nite Mt;u such that

u+ hm(t� u) 2 T; for all m 2Mt;u:

Proof. Let T = UnM [ N with U open and M;N meagre. As our
conclusions concern quasi all members of T; we may take N = ?; which
means that �for quasi all u 2 T�is synonymous with �for all u 2 UnM�. Fix
u 2 T: Then 0 2 U � u: Let the autohomeomorphisms hn satisfy (rwcc) at
0: Thus we may select V with u 2 V � U and � = �u > 0 such that

0 2 V � U � u and
\
n�k

�V nh�1n (V ) is meagre.

Further, select open W � V (e.g. W = ��1V ) with

0 2 �W � V � U � u:

Put
S = �W \

\
k2!

[
n�k

h�1n (Tu);

then
M 0 = �WnS =

[
k2!

\
n�k

�Wnh�1n (Tu) �
[
k2!

\
n�k

�V nh�1n (Tu)

is meagre. But �Wn(M �u) � (U �u)n(Mnu); so for t 2 (u+�W )\T with
t =2 (M 0 + u) [M we have x := t� u 2 (Tu \ S); and so there is an in�nite
set Mt;u such that

t� u = x 2 h�1m (Tu); for m 2Mt;u: (equiv)

Thus
u+ hm(t� u) 2 T; for m 2Mt;u: �
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4 Shift-embeddings

We now specialize Theorem 1 to a metric group setting in order to con-
sider sequences of autohomeomorphisms generated as shifts hn(x) = xzn:
Let T be a normed group with norm jjtjj := dT (t; eT ), where dT is right-
invariant (see [12] for background to the brief discussion here and refer-
ences). Thus dT (x; y) = dT (eT ; yx

�1) = jjyx�1jj: The conjugate metric is
~dT (x; y) = jjxy�1jj = dT (eT ; xy

�1) = dT (x
�1; y�1) and is continuous relative

to dT i¤T is a topological group. LetA = Auth(T ) denote the set of bounded
autohomeomorphisms h from T to T (i.e. having supT d(h(t); t) < 1) with
composition � as group operation. Thus eA(t) � t: Recall that A has the
right-invariant metric

dA(h; h
0) = sup

T
d(h(t); h0(t));

which generates the norm

jjhjjA := dA(h; eA) = sup
T
d(h(t); t):

For the purposes of studying topological �ows one is interested in topological
subgroups of A either under dA; or under its symmetrization

dSA = dA + ~dA;

where ~dA(f; g) is the conjugate metric ~dA(f�1; g�1):We note for completeness
the following.

Lemma. Under dA on A and dT on T; the evaluation map (h; t)! h(t)
is continuous.
Proof. Fix h0 and t0: The result follows from continuity of h0 at t0 via

dT (h0(t0); h(t)) � dT (h0(t0); h0(t)) + dT (h0(t); h(t))

� dT (h0(t0); h0(t)) + dA(h; h0): �

If T is a topological normed group then the left shift t! at; regarded as
homeomorphism, is both bounded and uniformly continuous in norm, in fact
it is bi-uniformly continuous, since its inverse t! a�1t is also uniformly con-
tinuous in norm. As a subgroup the shifts metrized by dA form a topological
normed group, isometric to T: In general the subgroup Hu of bi-uniformly
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continuous bounded homeomorphisms is a topological group under the sym-
metrized metric dSA (and is complete if dT is complete).

Let C = Cb(T ) denote the set of continuous functions from T to T with
norm-bounded range and with group operation pointwise multiplication:

(x � y)(t) = x(t)y(t):

Here the identity element is the constant function eC(t) � eT : To retain a
uni�ed setting we give C the supremum norm; thus C is now a metric space.

Remarks. 1. The symmetrized metric d(h; h0) = dA(h; h
0) + ~dA(h; h

0) is
admissible in that it endows Hu with the structure of a topological group.
We note that, if a group G is metrizable, non-meagre and analytic (for which
see [41]) in the metric, and left and right shifts are continuous, then G is a
topological group (see e.g. [44] p. 352). Our choice of dA retains metriz-
ability and right-invariance (normability) and is su¢ cient to ensure that the
natural A(T )-�ow on T , i.e. the evaluation action (h; t) ! h(t); is continu-
ous (compare the structural assumptions of Ellis�Theorem in [22], or [44] p.
351).
2. Rather than use the supremum metric, one may consider the compact-

open topology (the topology of uniform convergence on compacts, introduced
by Fox and studied by Arens in [1], [2]). However, in order to ensure the
kind of properties we need, the metric space T would need to be restricted
to a special case, which we prefer to deal with on its own merits. (On this
point see the remarks in [45]; for an alternative topology see [4] Ch. IV.)
From this perspective we recall some salient features of the compact-open
topology. For composition to be continuous local compactness is essential
([21] Ch. XII.2, [35], [4] Section 8.2, or [46] Ch.1). When T is compact
the topology is admissible, but the issue of admissibility in the non-compact
situation is not currently fully understood (even in the locally compact case
for which counter-examples with non-continuous inversion exist, and so ad-
ditional properties such as local connectedness are usually invoked �see [20]
for the strongest results). Our focus of interest is on separable function
spaces; we recall that, by a theorem of Arens, if T is separable metric and
the compact-open topology on C (T;R) is metrizable, then T is necessarily
locally compact and �-compact, and conversely (see e.g [23] p.165 and 266).
We consider the locally compact, �-compact case, typi�ed by R; at the end
of Section 4.
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De�nition. Say that zn 2 C is a null sequence in C or simply that zn is
uniformly null, if zn ! eT ; in sup norm, i.e.

jjznjj := sup dT (zn(t); eT )! 0:

Thus zn is a null sequence in C i¤ z�1n is a null sequence in C (where z�1n (t) :=
zn(t)

�1): Put
�n(t) = zn(t)t;

then

jj�njjA := sup dT (�n(t); t) = sup dT (zn(t)t; t) = sup dT (zn(t); eT ) = jjznjjC:

One thus has the following result.

Lemma. For zn in C, the sequence �n converges to the identity in A i¤
zn is a uniformly null sequence (in C).

The next two theorems correspond to Theorem 4E and 3D of [11] for the
(wcc), extended from the reals to normed groups.

Theorem 2N (Norm topology shift theorem). If  n in A con-
verges to the identity, then  n satis�es the weak category convergence condi-
tion (wcc). Indeed the sequence satis�es (wccc).

Proof. It is more convenient to prove the equivalent statement that  �1n
satis�es the category convergence condition.
Put zn =  n(z0); so that zn ! z0: Let k be given.
Suppose that y 2 B"(z0); i.e. r = d(y; z0) < ": For some N > k; we have

"n = d( n; id) <
1
3
("� r); for all n � N: Now

d(y; zn) � d(y; z0) + d(z0; zn)

= d(y; z0) + d(z0;  n(z0)) � r + "n:

For y =  n(x) and n � N;

d(z0; x) � d(z0; zn) + d(zn; y) + d(y; x)

= d(z0; zn) + d(zn; y) + d(x;  n(x))

� "n + (r + "n) + "n < ":
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So x 2 B"(z0); giving y 2  n(B"(z0)): Thus

y =2
\
n�N

B"(z0)n n(B"(z0)) �
\
n�k

B"(z0)n n(B"(z0)):

It now follows that \
n�k

B"(z0)n n(B"(z0)) = ?;

giving (wcc) as required; similarly for (wccc). �

Theorem 2D (Density topology shift theorem). Let T be a normed
locally compact group with left-invariant Haar measure m. Let V be m-
measurable and non-null. For any null sequence zn in C(T ) let hn(t) :=
tz�1n (t): Then for each k 2 !;

Hk =
\
n�k

V n[h�12n (V )\h�12n+1(V )] is of m-measure zero, so meagre in the d-topology.

That is, the sequence hn(t) = tz�1n (t) satis�es the weak category convergence
condition (wccc)

Proof. Suppose otherwise. We write V z for V �z; etc. so that t 2 h�1n (V )
i¤ hn(t) 2 V i¤ t 2 V zn(t): Now, for some k; m(Hk) > 0: Write H for Hk:
Since H � V; we have, for n � k; that ; = H \ h�1n (V ) and so a fortiori
h =2 Hzn(h) for h 2 H: Let u be a metric density point of H: Thus, for some
bounded (Borel) neighbourhood U�u we have

m[H \ U�u] >
3

4
m[U�u]:

Fix U� and put
� = m[U�u]:

Let E = H\U�u: For any zn(t); we havem[(Ezn(t))\U�uzn(t)] = m[E] >
3
4
�: By Theorem A of [27] p. 266, for all large enough n; we have

m(U�u4U�uzn(t)) < �=4:

Hence, for all n large enough we have j(Ezn(t))nU�uj � �=4: Put F =
(EBjjznjj(e)) \ U�u; then m[F ] > �=2 for all large enough n: But � � m[E [
F ] = m[E] +m[F ]�m[E \ F ] � 3

4
� + 1

2
��m[E \ F ]: So for h 2 H we have

m[H \ (Hzn(h))] � m[E \ F ] � 1

4
�;
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contradicting h =2 Hzn(h) for h 2 H: This establishes the claim. �

Remark. The only fact about hn used in the proof above is that, for
some sequence of radii r(n) tending to zero, hn(t) 2 Br(n)(t): One may thus
verify the (rwcc) condition in the following context.

Corollary 2. For An(t) := �nt+ zn; with �n ! � > 0 and zn uniformly
null, and for V bounded and of �nite positive measure,\

n�k

�V nAn(V ) is of m-measure zero, so meagre in the d-topology.

Proof. Put �n = �+ "n; so that "n ! 0; and let

Wn := ("n + zn)(V ) := f"nv + zn(v) : v 2 V g

so that
(�n + zn)(V ) � �V +Wn:

Nowm[Wn]! 0 and diam(Wn)! 0; so since �V is of �nite positive measure
Theorem 2D yields that \

n�k

�V nAn(V ) is null,

as required. �
As an immediate corollary of Theorems 1 and 2N we obtain the following

special case of Theorem 1.

Theorem 3. If X is a Baire subset of functions x(:) in C[0; 1] and
fn ! f in C[0; 1] in sup-norm, then for quasi all x 2 X there is an in�nite
set Mx such that

fx+ fm � f : m 2Mxg � X :
Proof. Let zn = fn� f ; then zn ! 0: Since C[0; 1]; a complete metric space,
is a Baire space, and x! x+ zn is a sequence of homeomorphisms, Theorem
2N applies. �

We may now deduce two strengthened forms of the Kestelman-Borwein-
Ditor embedding theorem. Putting hn(t) = tzn(t) we obtain the following
corollary.
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Theorem 4 (Functionwise Embedding Theorem). Let T be a
normed locally compact group, zn a null sequence in Cb(T ) such that t !
tzn(t) is, for each n; an autohomeomorphism. If S is Haar measurable,
resp. Baire, then for generically all t 2 S there is an in�nite set Mt such
that

ftzm(t) : m 2Mtg � S:

Next let zn and wn be null sequences in Cb(T ): Put h2n(t) = tzn(t) and
h2n+1(t) = twn(t); then the merged sequence z0(t); w0(t); z1(t); w1(t); ::: is a
null sequence in Cb(T ): Thus one has

Theorem 5 (Functionwise Conjunction Embedding Theorem).
Let T be a normed locally compact group, zn and wn null sequences in Cb(T )
such that t! tzn(t) and t! wtn(t) are, for each n; autohomeomorphisms.
If S is Haar measurable, resp. Baire, then for generically all t 2 S there is
an in�nite set Mt such that

ftzm(t); twm(t) : m 2Mtg � T:

This includes the result on bilateral shifts mentioned earlier.

5 Generic Re�ection Theorem

In this section, working again in the context of T = R, we begin by formulat-
ing simple conditions ensuring that various null sequences zn ! 0 in Cb(R)
lead to autohomeomorphisms hn(t) := t + zn(t) of R in the usual or in the
density topology. This will enable us to apply the functionwise embedding
theorems.

De�nition. Say that h : R! R is bi-Lipschitz (a notion implicit in [14])
if, for some �; �;

0 < � � h(u)� h(v)

u� v
� �; for u 6= v:

In particular, h is continuous and strictly increasing, and so is invertible with
continuous and strictly increasing inverse, also bi-Lipschitz, and di¤eren-
tiable, except possibly for at most countably many points. The bi-Lipschitz
functions preserve density points � in particular images and preimages of
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null/meagre sets are null/meagre (see [14], or [15] and [16]) � and so are
homeomorphisms in the d-topology on R:

De�nition. Call a null sequence zn in Cb bi-Lipschitz if the mappings
u ! u + zn(u) are bi-Lipschitz uniformly in n, i.e. for some �; � and all n
we have

0 < � � 1 + zn(u)� zn(v)

u� v
� �; for u 6= v: (1)

In particular z0n, where it exists, is bounded away from �1.

De�nition. For zn a sequence in Cb; the f-conjugate sequence �zn is
de�ned as follows:

�zn(t); or zfn(t); := f(t+ zn(t))� f(t):

Lemma. For f Lipschitz, the f-conjugate sequence is null in Cb: If zn(t)
satis�es (1) and the derivative f 0(t) is continuous near z = u and satis�es

1 + (�� 1)f 0(u) > 0;

and is bounded above in a neighbourhood of t = u; then the f-conjugate
sequence f�zn(t)g is locally bi-Lipschitz near t = u. In particular for zn
di¤erentiable this is so if

1 + f 0(u)z0n(u) > 0; for all n:

Proof. For f with Lipschitz constant �f we have jj�znjj � �f jjznjj; as

j�zn(t)j = jf(t+ zn(t))� f(t)j � �f jzn(t)j:

For f di¤erentiable, we may write f(u)� f(v) = f 0(w(u; v))(u� v) and

f(u+ zn(u))� f(v + zn(v)) = f 0(wn(u; v))[zn(u)� zn(v) + (u� v)]:

Thus we have

�zn(u)� �zn(v)
u� v

= f 0(wn(u; v))
zn(u)� zn(v)

u� v
+ [f 0(wn(u; v))� f 0(w(u; v))]:
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Hence

1 +
�zn(u)� �zn(v)

u� v
= 1 + f 0(wn)

zn(u)� zn(v)

u� v
+ [f 0(wn(u; v))� f 0(w(u; v))]

� 1 + (�� 1)f 0(wn) + [f 0(wn(u; v))� f 0(w(u; v))];

and the latter term is positive for v in a small enough neighbourhood of
t = u: To obtain the di¤erentiable case we note that in the preceeding line

1 + f 0(wn)
zn(u)� zn(v)

u� v
> 0

for v in a small enough neighbourhood of t = u: �

As an immediate corollary of the above Lemma, the CET and the two
shift theorems, we have:

Theorem 6 (Generic Re�ection Theorem). Let T be measurable/Baire,
f(:) be continuously di¤erentiable and non-stationary at generically all points,
zn ! 0 in supremum norm a null sequence that is bi-Lipschitz with

1 + f 0(t)z0n(t) > 0; for all n; (2)

for generically all t 2 T: Then, for generically all t 2 T; there is an in�nite
set Mt such that

t+ f(t+ zn(t))� f(t) 2 T; for all n 2Mt: (3)

In particular, if in addition f is linear and f(t) = �t with � 6= 0; then for
generically all u 2 T there is an in�nite set Mu such that

�un + (1� �)u 2 T for all n 2Mu; where un = u+ zn(u): (4)

The term �re�ection�above is motivatred by the Lemma in Section 6. For
our closing results we need the following.

De�nitions.
1. Say that f is smooth for zn if (2) holds.
2. More generally, say that the sequence fn of function from R to R is

smooth for zn if:
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(i) �zn(t) := fn(t+ zn(t))� fn(t) is a null sequence, and
(ii) hn(t) := t+ �zn(t) is an autohomeomorphism.

Example 1. Here the linear case f(t) = �t is of particular interest. Here

hn(t) := t+ f(t+ zn(t))� f(t) = t+ �zn(t):

For � > 0; the derivative condition for hn to be increasing reads

1 + �z0n(t) � 0; or z0n(t) � � 1/�:

So, if the null function sequence is constant (as in Kestelman-Borwein-Ditor
Theorem), with zn(t) � zn; the condition is satis�ed, as it reduces simply to
0 � � 1/�:

Example 2. Let �n be a sequence of non-zero reals and zn a null sequence
in C: Put

fn(t) = �nf(t);

where f(:) is continuously di¤erentiable. Thus

j�zn(t)j = jfn(t+ zn(t))� fn(t)j = �njzn(t)jjf 0(vn(t))j;

for some vn(t): Thus j�zn(t)j ! 0 on compacts if �n is bounded. Now

d

dt
(t+ �nf(t+ zn(t))� �nf(t)) = 1 + 
n(f

0(t+ zn(t))[1 + z0n(t)]� f 0(t))

= 1 + 
nf
0(t+ zn(t))z

0
n(t) + �n[f

0(t+ zn(t))� f 0(t)]:

Thus, for �n bounded, a condition such as

1 + �nf
0(t)z0n(t) > 0

ensures that t+ �zn(t) is a Euclidean homeomorphism. This will be so when
zn(t) � zn (constant).
For f(t) = t we have

�zn(t) = �nzn(t):

Thus if (1) holds for zn; then, for u; v distinct and �n > 0;

1� �n < 1 + �n(�� 1) � 1 + �n
zn(u)� zn(v)

u� v
� 1 + �n(� � 1):
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So, for 0 < �n < 1; we conclude that �zn is bi-Lipschitz. If zn(t) = zn
(constant) then the only condition that needs to be in place is that �njjznjj !
0: This can be easily be arranged by replacing zn by a subsequence ẑn = zk(n)
such that �njjzk(n)jj ! 0:

Theorem 7 (Smooth Image Theorem). Let f and g both be smooth
for zn 2 C which is di¤erentiable and bi-Lipschitz. Then, for generically all
t 2 T; there is an in�nite set Mt such that

t+ zfn 2 T; and t+ zgn 2 T for all n 2Mu: (5)

In particular, for f smooth and g(t) = t the identity map we obtain the
simultaneous embedding:

t+ zfn 2 T; and t+ zn 2 T for all n 2Mt:

Furthermore, if f and g are smooth and linear and f(t) = �t with � 6= 0;
g(t) = �t with � 6= 0; then for generically all t 2 T there is an in�nite set
Mt such that

t+ �zn 2 T; and t+ �zn 2 T for all n 2Mt:

For instance, taking � = 1; � = �1 we obtain generic bilateral embedding:

t+ zn 2 T; and t� zn 2 T for all n 2Mt:

For �n = 2n and zn(t) = zn constant, the following result (though not its
proof) appears implicitly in the proof of Császár�s Non-separation theorem
(of a mid-point convex function and its lower hull by a measurable function);
see [9] for applications.

Theorem 8 (Császár�s Genericity Theorem, [18], or [32] p 223-226).
Let T be measurable or Baire.
(i) Let f�ng be bounded from below by unity and let fzng ! 0 be uniformly
null. For generically all t 2 T; there are points tn 2 T such that, along some
subsequence of n;

t = �ntn + (1� �n)un(t); where un(t) = t+ zn(t):

(ii) Let f�ng be positive and bounded away from zero and let fzng ! 0 be a
null sequence of reals. For generically all u 2 T and generically all t near
u; there are points tn 2 T such that, along some subsequence of n;

t = �ntn + (1� �n)un; where un = u+ zn:

19



Proof. The conclusions concern subsequences; so we may divide the
argument according as �n tends to in�nity or is convergent. Suppose �rst
that an ! 1; and so also that, for all n; �n > 1: For 
n := 1=�n and
�n = 1 � 
n, we have 0 < �n < 1: Taking fn(t) = �nt = (1 � 
n)t; we
conclude from Example 2 above that for generically all t 2 T there is an
in�nite set Mt such that

tn = t+ (1� 
n)zn(t) 2 T; for n 2Mt:

So
tn = 
nt+ (1� 
n)[t+ zn(t)] 2 T; (csa)

and equivalently
t = �ntn + (1� �n)un(t):

Now suppose that �n ! � > 0: Thus (1 � �n)zn ! 0: Take h�1n (t) =
An(t) = �nt + (1 � �n)zn(t): Since (rwcc) holds at 0 in the Euclidean case
(by Remark 4 of Section 2), and also in the density case by Corollary 2, we
conclude that there is an in�nite set Mt;u such that

t� u = x 2 h�1m (Tu); for m 2Mt;u;

as in equation (equiv) in the proof of Cor.1 (end of Section 3). Thus again
we have

t� u = h�1n (tn � u) = �n(tn � u) + (1� �n)zn;

or again
t = �ntn + (1� �n)(u+ zn): �

Remarks. 1. Theorem 6 applies also to sequences zn which converge to
zero on compacts. This is because all our results are local, by capping, as
follows. Suppose zn(t) only converges to zero on compacts and that t+ zn(t)
is is a Euclidean homeomorphism (i.e. is strictly increasing and continuous).
For any interval (a; b) in R, the capped sequence

ẑn(t) =

8<:
zn(a); for t � a;
zn(t); for a < t < b;
zn(b) for t � b

has ẑn ! 0 in supremum norm, and the substitution of ẑn for zn preserves the
homeomorphism property (i.e. t+ ẑn(t) is strictly increasing and continuous)
as well as equality with t+ zn(t) on (a; b).
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For instance, consider f(t) = t2 and a given null sequence of constants
wn ! 0: Here its f -conjugate sequence is zn(t) := wn(2t+ wn) and

hn(t) := t+ zn(t) = t(1 + 2wn) + w2n

is increasing for n large enough; however zn ! 0 uniformly only on com-
pacts. Nevertheless, by the capping procedure, here too, for T Baire non-
meagre/measurable non-null, for generically all t in T there is an in�nite set
Mt such that

ft+ zn(t) : m 2Mtg � T:

2. Other examples of smooth generation of null sequences are

�zn(t) := f('(t) + zn(t))� f('(t));

where ' is homeomorphism. Thus if  = '�1; then t+ �zn(t) becomes, under
the substitution u = '(t);

 (u) + f(u+ zn( (u)))� f(u):

The special case  = f then leads to the embedding of the sequence

f(u+ zn( (u))):

6 Applications

The theorems of this section illustrate one area of use of the in�nite combi-
natorics asserted by the Kestelman-Borwein-Ditor Theorem �in relation to
automatic continuity of (mid-point) convex functions. Call T subuniversal if
for any null sequence fzng ! 0 in R there is an in�nite M � !; and t 2 R
such that

ft+ un : n 2Mg � T: (6)

The term originates with Kestelman, who calls T universal for null sequences
when (6) holds with M co-�nite. Thus a Baire non-meagre/measurable non-
null set T is subuniversal. Although subuniversality is the key combinatorial
concept, it needs a geometric rephrasing in the Lemma which follows to suit
the needs of the arguments below, which are geometric in nature.

Averaging-Re�ection Lemma. A set T is subuniversal i¤ it is �aver-
aging�, that is, for any null sequence fzng ! 0; any given point u 2 T; and
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with un := u + zn (thus an arbitrary convergent sequence, but with limit in
T ), there are w 2 R (an averaging translator) and fvng � T such that, for
in�nitely many n 2 !; we have:

un =
1

2
w +

1

2
vn:

Equivalently, there are w 2 R (a re�ecting translator) and fvng � T such
that, for in�nitely many n 2 !; we have:

vn =
1

2
w +

1

2
un:

Proof. In the averaging case, it is enough to show that 1
2
T is subuniversal

i¤ T is averaging. If 1
2
T is subuniversal then, given un ! u; there are w 2 R

and some in�nite M so that f�1
2
w + un : n 2 Mg � 1

2
T ; hence, putting

vn := 2un � w; we have fvn : n 2 Mg � T: Conversely, if T is averaging
and fzng ! 0; then for some x and some M; f2x + 2zn : n 2 Mg � T; so
fx + zn : n 2 Mg � 1

2
T and hence 1

2
T is subuniversal. Similar reasoning

yields the re�ecting case. �

We recall some properties of convex functions, for which we need to de�ne
the lower hull mf (x) of f by

mf (x) = lim inf
�!0+

ff(t) : jt� xj < �g:

Portmanteau Theorem for Convex Functions For convex f :
(i) If f is locally bounded above at some point, then f is locally bounded

above at all points ([32] p. 138).
(ii) If f is locally bounded below at some point, then f is locally bounded

below at all points ([32] p. 139).
(iii) If f is locally bounded above at some point, then it is everywhere

locally bounded ([32] p. 140).
(iv) If f(x) 6= mf (x) for some x; then f is not locally bounded at x ([32]

p. 144).

The common feature here is that the sequence witnessing bad behaviour
at one point yields by translation a sequence witnessing bad behaviour at
any desired point.
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Theorem 8. If f is convex and bounded below on a subuniversal set T ,
then f is locally bounded below.

Proof. Suppose not. Let K be a lower bound on T:We use the re�ecting
property of T: If f is not locally bounded from below, then at any point u in
�T there is a sequence fung ! u with ff(un)g ! �1: For some w 2 R; we
have vn = 1

2
w + 1

2
un 2 T; for in�nitely many n: Then

K � f(vn) �
1

2
f(w) +

1

2
f(un); or 2K � f(w) � f(un);

i.e. f(un) is bounded from below, a contradiction. �

Theorem 9 (cf. [37] Th. 3). If f is convex and bounded above on a
subuniversal set T , then f is continuous.

Proof. We use the averaging property of T: Suppose that f is not con-
tinuous, but is bounded above on T by K. Then f is not locally bounded
above at some point of u 2 �T : Then there is a null sequence zn ! 0 with
f(un)!1; where un = u+ zn: Select fvng and w in R so that, for in�nitely
many n; we have

un =
1

2
w +

1

2
vn:

But for such n;we have

f(un) �
1

2
f(w) +

1

2
f(vn) �

1

2
f(w) +

1

2
K;

contradicting the unboundedness of f(un): �

The Proposition, taken together with the Kestelman-Borwein-Ditor The-
orem, implies the classical result below, an early automaticity theorem.

Császár-Ostrowski Theorem ([18], [32] p. 210). A convex function
f : R!R bounded above on a set of positive measure/non-meagre set is
continuous.

The last two theorems implies the following earlier classical result due to
Sierpiński [43] (cf. [5] p. 5).

Corollary (Sierpínski�s Theorem [43], [32] p. 218). Ameasurable/Baire
convex function f : R!R is continuous.
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This is immediate since f is bounded above on a set of positive measure/non-
meagre set is continuous.

Theorem (Császár�s First Theorem) ([32] p. 223.) Suppose f is
convex and bounded below by K on a Baire non-meagre/measurable non-null
set T . Then mf is bounded below by K on the closure of T and hence f is
continuous.

Proof. Suppose otherwise. Let 
n ! 0 rational (e.g. 
n = 2
�n) and f

convex: For some u 2 �T there is a sequence un ! u with f(un) ! L < K:
By Theorem 8 with �n = 1=
n (cf. equation (csa)), there is w and m(n) such
that vn := 
nw + (1� 
n)um(n) 2 T: Hence

K � f(vn) � 
nf(w) + (1� 
n)f(um(n)):

Passing to the limit we obtain the contradiction K � L: �
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