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Abstract

This paper extends the topological theory of regular variation of
the slowly varying case of [BOst13] to the regularly varying functions
between metric groups, viewed as normed groups (see also [BOst14]).
This employs the language of topological dynamics, especially �ows
and cocycles. In particular we show that regularly varying functions
obey the chain rule and in the non-commutative context we charac-
terize pairs of regularly varying functions whose product is regularly
varying. The latter requires the use of a �di¤erential modulus�akin to
the modulus of Haar integration.
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1 Introduction

In [BOst13] and [BOst14] we developed the basic theory of regular variation
up to the Uniform Convergence Theorem (UCT) for functions h de�ned on a
metric (topological) group X with values in a metric group H:We employed
the language of topological dynamics (for which see [Ell1]), speci�cally T -
�ows on X, for T a group, that is continuous maps ' : T �X ! X satisfying

'(st; x) = '(s; '(t; x)); with '(eT ; x) = x;

where eT is the identity element of T: With tx denoting t(x) := '(t; x),
this enabled us to de�ne the dual cocycles (for which see [Ell2]) of regular
variation as

�h(t; x) := h(tx)h(teX)
�1 and ~�h(x; t) := h(tx)h(x)�1;

leading to the formulas

@Th(x) = lim
x!1

~�h(x; t) and @Xh(t) = lim
x!1

�h(x; t); i.e., as d(x; eX)!1:

Here we assume the limits are de�ned and exist. (The Characterization The-
orem of [BOst14] asserts that it su¢ ces for the limits to exist on a non-meagre
set.) When either limit is identically the identity element, respectively of X
or T; the function h is said to be slowly varying; two corresponding theorems
assert uniform convergence on compacts. When X = R and T = R�+ (the
multiplicative group of strictly positive reals), these formulas yield one and
the same classical de�nition of regular variation, for which see [BGT].
Here we extend the theory to regularly varying functions and consider the

their �calculus�: matters such as factorization of a regularly varying function
into a multiplicative function and a slowly varying one, and circumstances
under which products of regularly varying functions are regularly varying.
These matters are straightforward in an abelian-group setting. Here we �nd
that there is a satisfactory non-commutative theory, provided the metric is
appropriately invariant, although on occasion a Haar-like modulus function
is required (cf. [Na]).
We recall a number of de�nitions from [BOst12], to which we refer for

justi�cation and proof in the absence of other citations. Let X be a metric
group with identity element eX and with a metric dX ; which we assume
is right-invariant (the Birkho¤-Kakutani Metrization Theorem secures this
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property, cf. [Bir], [Kak]). It is helpful to refer to the associated group-norm
jjxjj := dX(x; eX); an equivalent way of describing the right-invariant metric
structure, where a group-norm jj � jj : X ! R+ is de�ned by the following
three properties:
(i) Subadditivity (Triangle inequality): jjxyjj � jjxjj+ jjyjj;
(ii) Positivity: jjxjj > 0 for x 6= e;
(iii) Inversion (Symmetry): jjx�1jj = jjxjj:

We can thus be guided by the normed vector-space calculus paradigm. We
denote by Auth(X) the group of self-homeomorphisms of X under composi-
tion. H(X) denotes the subgroup

fh 2 Auth(X) : jjhjj <1g;

where, in turn,

jjhjj := d�X(h; eH(X)) = sup
x2X

dX(h(x); x))

denotes the group-norm on H(X); which metrizes it by the right-invariant
metric d(g; h) = jjgh�1jj:

2 Topological regular variation : Fréchet case

De�nitions. LetX be a metric space with a distinguished point z0: This will
usually be eX ; but on occassion other choices are convenient. Let G be some
�xed �ground group�of homeomorphisms of X into itself acting transitively
onX: ThusX is a homogeneous space. Let ' = f'ng be a divergent sequence
in G: Let H be a normed group.
We say that h : X ! H is '-regularly varying, or if context permits, just

Fréchet regularly varying, if for some function k(:) = @'h(:) and, for each t;

h('n(t))h('n(z0))
�1 ! k(t):

We have thus preferred division on the right and so, strictly speaking, have
de�ned right�regular variation (left-regular requiring division on the left);
we return to this matter below. The de�nition of �-regularly varying follows
that of �-slowly varying (for which see [BOst13]), to which this case reduces
when k(t) � eH . In particular, for � generated from a divergent sequence
' = f'ng � G by composing 'n with the bounded homeomorphisms of
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H(X); we will say that h is strongly '-regularly varying. We refer to the
function @'h as the limit function, or the �-limit function.
We will be exclusively concerned with Baire functions (functions with the

Baire property, see below for the de�nition). When h : X ! H and X;H are
locally compact topological groups it is natural to consider h measurable in
the sense of Haar measures on X and H: Then the limit function k := @'h is
also measurable. We shall soon see that k is then a homomorphism. Accord-
ing to Kodaira�s theorem ([Kod], corollary to Satz 18. p. 98) k is measurable
i¤ k is continuous (so i¤ Baire), since the Weil topology determined by a
measure is the original topology of the group �see [We], and [Hal1] Ch. XII.
See also [BOst12] Section 5 for an integrated treatment in the context of
normed groups.
In a companion paper [BOst16], we study R-�ows, i.e. group actions

specializing T to R, and so one needs to discriminate between cases. By
analogy with the theory of di¤erentiation in functional analysis (compare
[HP] Ch. III and [Ru-FA1] 1st ed., omitted in 2nd ed.) we shall there call
these cases Fréchet, Gâteaux and Hadamard. The limit function k here will
there be called the Fréchet limit function.
Given a bounded homeomorphism � we will later identify the point (im-

age) t = �(z0) in the de�nition above with � . Thus

k(�); or k(�(z0)) = limh('n(�(z0)))h('n(eX))
�1: (RV)

This enables us to interpret k as a mapping from H(X) to H: Our �rst
proposition shows the e¤ect of changing the distinguished point.

Proposition (Concatenation Formula). If h is '-regularly varying
for the distinguished point z = z0; then for any w the corresponding Fréchet
limit kw(x) = limh('n(x))h('n(w))

�1 exists and

kz(x) = kz(w)kw(x):

Proof. We have

kz(x) = limh('n(x))h('n(w))
�1h('n(w))h('n(z))

�1

= kw(x)kz(w): �

Our next result demonstrates that we may identify k(x) and k(�x); despite
the fact that there will be more than one homeomorphism mapping z0 to x:
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De�nition. Here (as in Section 4 of [BOst13]) let H0 = f� 2 H(X) :
�(z0) = z0g be the stabilizer subgroup (of the distinguished null point). Note
that this is conjugate to the stabilizer of any other point of the (homogeneous)
space X: Thus, for �; � in H(X) with �(z0) = �(z0); we have ��1� 2 H0:We
will regard two homeomorphisms �; � in H(X) that are H0-equivalent (i.e.
both in the same coset of H0; e.g. � 2 �H0) as equal. Whenever convenient
we will denote by �x the unique homeomorphism (up to equivalence) taking
z0 to x: This is particularly useful when G is a topological group, where the
canonical choice is

�u(g) = �u(g) = ug;

as we then have �u�v = �uv: The following result justi�es use ofH0-equivalence.

Proposition. If h is strongly '-regularly varying and � is a bounded
homeomorphism with �(z0) = z0, then the corresponding Fréchet limit func-
tion satis�es k(�(t)) = k(t).

Proof. We have

k(�(t)) = limh('n(�(t)))h('n(z0))
�1 = limh('n(�(t)))h('n(�(z0)))

�1 = k(t):

�

Now consider the homeomorphism

�(x; y) := �y�
�1
x :

Since �(x; y)(x) = y; this is just the canonical homeomorphism taking x to
y: Moreover,

�y = �(x; y)�x;

so that � is a coboundary cocycle (the de�ning property being the last equa-
tion) given the present context which treats the homeomorphism t from x to
y as unique so that y and xt are indistinguishable (see e.g. [Ell2]). Of course,
in the group context we have �(x; y) := �yx�1 :

Proposition (Coboundary Property). If k is strongly '-regularly
varying, then k is a homomorphism from the group of bounded homomor-
phisms H(X) into the normed group H, that is

k(��) = k(�)k(�):
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In particular, k has the coboundary property,

k(�y) = k(�(x; y))k(�x);

and hence, if X is a topological group, then

k(�uv) = k(�u)k(�v):

Proof. For bounded �; � we have

k(��) = limh('n(�(�(z0))))h('n(z0))
�1

= limf[h('n(�(�(z0))))h('n(�(z0)))]�1 � [h('n(�(z0)))h('n(z0))]�1g
= k(�)k(�):

The coboundary property follows from taking � = �x and �(x; y) = �y�
�1
x

so that �� = �y:
As to the �nal equation, take v = x; u = yx�1 to obtain uv = y and note

�(x; y) = �yx�1 = �u: �

Our last results in this section assert continuity. One of the ingredients is
an idea due to Banach (see [Ban-T] 1.3.4, p. 40 in collected works, cf. [Meh],
see also the Banach-Mehdi Theorem in the companion paper [BOst14] and
associated literature cited there). As there, so too here, we refer to functions
with properties related to the classical property of Baire. For background
on Baire sets (i.e., sets with the Baire property) we refer to Kechris ([Kech];
see section 8.F p. 47) and on Baire category and Baire spaces, we refer
to Engelking ([Eng]; see especially p.198 Section 3.9 and Exercises 3.9.J),
although we prefer �meagre�to �of �rst category�. In our more general context
we need to distinguish between three possible interpretations of the Baire
property in relation to functions, as follows.

De�nitions.
1. Say that a function f : X ! Y between two topological spaces is

H-Baire, for H a class of sets in Y; if f�1(H) has the Baire property (i.e.
f�1(H) is open in X modulo the meager sets of X) for each set H in H.
Thus f is F(Y )-Baire if f�1(F ) has the Baire property for all closed F in Y:
Since

f�1(Y nH) = Xnf�1(H);
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f is F(Y )-Baire i¤ it is G(Y )-Baire, when we will simply say that f is Baire
(�f has the Baire property�is the alternative usage).
2. We distinguish between functions that are F(Y )-Baire and those that

lie in the smallest family of functions closed under pointwise limits of se-
quences and containing the continuous functions (for a modern treatment see
[Jay-Rog] Sect. 6). We follow tradition in calling these last Baire-measurable.
3. We will say that a function is Baire-continuous, if it is continuous

when restricted to some co-meagre set.
The connections between these concepts are given in the theorems below.

See the cited papers for proofs.

Banach-Neeb Theorem. ([Ban-T] Th. 4 pg. 35, and Vol I p. 206;
[Ne]).
(i) A Baire-measurable f : X ! Y with X a Baire space and Y metric

is Baire-continuous.
(ii) A Borel-measurable f : X ! Y with X; Y metric and Y separable is

Baire-measurable.

Remarks. In fact Banach shows that a Baire-measurable function is
Baire-continuous on each perfect set ([Ban-T] Vol. II p. 206). Neeb assumes
in addition that Y is arcwise connected, but, as Pestov remarks in a review of
the paper, the arcwise connectedness may be dropped by referring to a result
of Hartman and Mycielski [HM] that a separable metrizable group embeds
as a subgroup of an arcwise connected separable metrizable group.

Baire Continuity Theorem. A Baire function f : X ! Y is Baire
continuous in the following cases:
(i) Baire condition (see e.g. [THJ] Th. 2.2.10 p. 346): Y is a second-

countable space;
(ii) Emeryk-Frankiewicz-Kulpa ([EFK]): X is µCech-complete and Y has

a base of cardinality not exceeding the continuum;
(iii) Hansell condition ([Han]): f is �-discrete and Y metric;
(iv) Pol condition ([Pol]): X is Borelian-K and Y metrizable and of

nonmeasurable cardinality.

Remarks. Hansell�s condition, requiring the function f to be �-discrete,
is implied by f being analytic when X is absolutely analytic (i.e. Souslin-
F(X) in any complete metric space X into which it embeds). Frankiewicz
[Fr] considers implications of the axiom of constructibility.
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We will say that the pair (X; Y ) enables Baire continuity if the spaces
X; Y satisfy any one of the three conditions (i), (ii), or (iv). In the applica-
tions Y is usually the additive group of reals R, so satis�es (i).

We recall a de�nition from [BOst13].

De�nitions.
1. Let  n : X ! X be auto-homeomorphisms. We say that a sequence

 n in H(X) converges to the identity if

jj njj = d�( n; id) := sup
t2X

d( n(t); t)! 0:

2. Say that X has the crimping property at z0 if for any null sequence
zn ! z0; there is a sequence of homeomorphisms  n converging to the identity
(so necessarily in H) with  n(z0) = zn: We refer to the  n as a crimping
sequence at z0: Say that X has the crimping property globally if it has the
crimping property at all points.

Theorem (Continuous Coboundary Theorem). Suppose that X
is a Baire space with the crimping property (as in the UCT). Let H be a
topological group such that the pair (X;H) enable Baire continuity. If h :
X ! H is Baire regularly varying with limit function k, then k is Baire, has
the coboundary property

k(�y) = k(�(x; y))k(�x);

equivalently
k(�x�y) = k(�x)k(�y);

and is continuous.

Proof. First observe that k(:) is Baire. Indeed, for each r > 0; the
corresponding level set Tr := ft : jk(t)j < rg may be expressed as

Tr =
[
k2!

\
n�k

ft : jh('n(t))h('n(z0))�1j < rg;

and this is a Baire set, because the Baire sets form a �-algebra and each
set ft : jh('n(t))h('n(z0))�1j < rg is Baire by the continuity of 'n and the
assumption that h is Baire. Now

X =
[
r2Q+

Tr;
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so since X is a Baire space, the set Tr for some r is non-meagre.
We have already demonstrated the coboundary property.
We �rst set out the proof of continuity at z0. Take zn ! z0; we will show

that k(zn)! k(z0) = 0: By the crimping property, we may choose a sequence
 n converging to the identity with zn =  n(z0): Being Baire, the function k
is continuous on a co-meagre set D: Now

T :=
1\
n=1

ft :  n(t) 2 Dg =
1\
n=1

 �1n (D)

is co-meagre and so non-empty, since each  n is a homeomorphism. Let
t0 2 T: Select � with �(z0) = t0: Put tn =  n(t0) =  n(�(z0)): Thus ftn : n 2
!g � D and tn ! t0; since  n converges to the identity. Writing  n for � in
the Coboundary Property, we obtain

k( n(�(z0))) = k( n(z0))k(�(z0));

or
k(tn) = k(zn)k(t0):

Since k is continuous on D at t0 we conclude that k(zn) ! k(t0)k(t0)
�1 =

e = k(z0): Thus k is continuous at z0:
To prove continuity at an arbitrary location x0; �rst choose a bounded

homeomorphism � with �(z0) = x0: Put zn = ��1(xn): Then zn ! z0; so
we may choose a (crimping) sequence  n converging to the identity with
zn =  n(z0): As we wish to prove a topological result about k we may,
by the deGroot and McDowell Lemma ([dGMc]), assume w.l.o.g. that � is
uniformly continuous. Thus, by Lemma 2, the conjugate sequence � n =
� n�

�1 converges to the identity. As before,

T :=
1\
n=1

ft : � n(t) 2 Dg =
1\

n=1n

� 
�1
n (D)

is non-empty. For t0 2 T; we have tn = � n(t0)! t0; since � n converges to the
identity. So k(tn) ! k(t0); as tn 2 T: Writing � n for � in the Coboundary
Property, and noting that � n(z0) = xn; we obtain

k(� n(�(z0))) = k(� n(z0))k(�(z0)):

So
k(tn) = k(xn)k(t):
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Thus k(xn) ! k(tn)k(t)
�1 ! k(t0)k(t)

�1 = k(x0); since with � replaced by
� in the Coboundary Property we have

k(t0) = k(��(z0)) = k(�(z0))k(�(z0)) = k(x0)k(t):

So again k(xn)! k(x0); and k is continuous. �

In particular specializing X to topological groups, and taking �x(z) =
�x(z) = xz; one has:

Corollary (Continuous Homomorphism Theorem). Suppose that
h : X ! H is a Baire regularly varying function de�ned on a Baire topological
group X with values in the topological group H; and that the pair (X;H)
enables Baire continuity. If h has a limit function k; then k is a continuous
homomorphism, i.e.

k(xy) = k(x)k(y):

Comments.
1. When investigating the limit function @'h in the topological group

context one should restrict attention to divergent sequences ' that are ad-
missible in the following sense. If K(G;R) � C(G;R) is the subspace of
(continuous) homomorphisms from a topological group G to the additive
group of the reals R, then we say that ' = f'ng is admissible if, for each k
in K(G;R),

@'k := lim
n
k('n(g))k('n(z0))

�1 2 K(G;R):

For example, when G = R with � comprising a¢ ne homeomorphisms, a
sequence 'n(x) = anx+bn is admissible if an ! a is convergent and jbnj ! 1.
Indeed, if k(x) = �x; then we have @'k(x) = ak(x); as

�(anx+ bn)� �bn = �anx! �ax:

2. Isometries are special, but Brouwer�s Plane Translation Theorem as-
serts that any orientation preserving �xed-point-free homeomorphism of R2
is topologically conjugate to a translation, e.g. 'e1(x) := x+e1 = (x1+1; x2):
See for example [Gu].
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3 The calculus

We begin by recalling that for X;H normed groups h : X ! H is '-
regularly varying in the weak sense, for ' = f'ng a divergent sequence of
auto-homeomorphisms of X; if, for some function k : X ! H;

h('n(x))h('n(e))
�1 ! k(x) for all x 2 X; as n!1;

with e = eX ; the identity element of X; i.e.

dH(h('n(x))h('n(e))
�1; k(x))! 0:

In this section we work with this weaker form. When 'n(x) = unx; we
have jj'njj = d�X(idX ; 'n) = sup dX(x; unx) = dX(e; un) = jjunjj; and so the
de�nition reduces to

h(unx)h(un)
�1 ! k(x) for all x 2 X; as n!1:

We note that by the triangle inequality (cf. Corollary in Section 2 of [BOst13])

jjunjj � jjxjj � jjunxjj � jjunjj+ jjxjj;

so that, in some sense, a �xed x provides a relatively small increment to
the point at in�nity (however, here we do not have an upper bound on
jjxjj=jjunxjj); on that basis we may think of f(unx)f(un)�1 as a generalized
di¤erential quotient. These analogies are driven by the abelian case, when
we may write additively

d(h(un + x)� h(un); k(x))! 0; for all x 2 X; as n!1:

Correspondingly, here k(x) is linear, and thus the di¤erential h(un+x)�h(un)
is linearly approximated. Passing to a normed vector space X; one has

jjh(un + x)� h(un)� k(x)jj ! 0; for all x 2 X; as n!1;

which is di¤erential calculus proper. This is the ultimate justi�cation for
borrowing di¤erential terminology; in particular, we write @'h for the limit
function, when it exists. Indeed topological groups were taken by A. D.
Michal and his collaborators as a canonical setting for di¤erential calculus
(see the review [Mich] and as instance [JMW]).
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As a �rst application of the concept of normed group we prove the fol-
lowing.

Proposition (Chain Rule of Regular Variation). Let X;G;H be
normed groups. Let g : X ! G and h : G ! H be regularly varying with g
diverging under the group-norm of G, i.e.

jjg(x)jjG !1; as jjxjjX !1;

and suppose that G is locally compact. Then

@X(h � g)(t) = @Gh@Xg(t):

Proof. Fix t: Put

g(tx) = a@Xg(t)g(x) with a = a(x)! eG; as jjxjj ! 1:

Then in the limit as jjxjj ! 1; we have with y = g(x) that jjyjj ! 1 and
so for s in a compact set

h(sy)h(y)�1 = b@Gh(s) with b = b(s; y)! eH ; as jjyjj ! 1:

We take s such that
s = a(x)@Xg(t);

which, for large x; remains in a compact neighbourhood of @Xg(t):
Now @Gh is a continuous homomorphism, so that @Gh(a)! eH as a! eG;

and so

h(g(tx))h(g(x))�1 = h(a@Xg(t)g(x))h(g(x))
�1 = b@Gh(a@Xg(t))

= b@Gh(a)@Gh(@Xg(t))! eH@Gh(@Xg(t)):

Thus
@X(h � g) = @Gh � @Xg;

as asserted. �

Our main concern in this section is with products of regularly varying
functions. In the classical context of the real line it is obvious that the
product of two regularly varying functions is regularly varying. This is also
true in the context of functions h : X ! H when the group H is abelian and
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the metric is invariant. What may be said if H is non-commutative? It has
to be appreciated that our de�nition of regular variation opted for division on
the right, so to be fair the question should address one-sided multiplication
(in fact on the left, see below). To guess the answer, focus on the special
case of two multiplicative functions k(x) and K(x) with K(x) = x; if the
product k(x)K(x) were to be regularly varying, one would expect it to be
multiplicative, and the latter property is equivalent to

k(xy)xy = k(x)xk(y)y; i.e. k(y)x = xk(y);

this asserts that each value k(y) commutes with each element x in the group
H. One guesses that the range of k must lie in the center Z(H) of the group
H: (We recall that the subgroup Z(H) = fa 2 H : ah = ha for all h 2 Hg is
the centre.)

De�nition. A function k : X ! H will be termed central if the range of
k is in the centre Z(H):

Thus if H has trivial centre k(x) := eH : We show here that a non-
commutative theory may be developed justifying the guess and yielding a
Left Product Theorem which characterizes the admissible left factor as the
product kh of a central function k with a slowly varying function h (subject
to a mild regularity assumption). The theory requires that the group H ex-
hibit a strong metric property, one satis�ed in the usual abelian case of R and
C; namely bi-invariance (two-sided invariance). Thus our theory extends the
classical case of R and C. Bi-invariance is equivalent, as Klee [Klee] shows,
to the existence of a metric possessing what we term Klee�s property:

dH(ab; xy) � dH(a; x) + dH(b; y): (1)

This is equivalent (see [BOst12] Section 2) to the norm property

jjab(xy)�1jj � jjax�1jj+ jjby�1jj:

We recall also Klee�s result [Klee] that, when the group H is topologically
complete and abelian, then it admits a metric which is bi-invariant (i.e.
both right- and left-invariant). However, we work with the assumption of
bi-invariance occasionally only, and sometimes also require completeness.

De�nitions. We call a metric with Klee�s property (1) a Klee metric for
H: We call H a Klee group if its metric dH is a Klee metric.
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The bi-invariance property acts as a replacement for commutativity, and
is exactly the condition which allows a proper development of the calculus of
regularly varying functions, mimicking the non-commutative development of
the Haar integral (see e.g. [Na]). Traditionally regular variation �nds its uses
in probability theory, where H = R (the result of probabilities being real), so
our restriction o¤ers an expansion of the theory which, in particular, takes in
its stride applications to complex analysis. For a discussion of bi-invariance
in the context of matrices see e.g. [Bha] Section 3. We begin with basic
factorization theorems where one factor, a right-factor, is slowly varying.
This way round is easy by virtue of the de�nition of regular variation on the
�right�(the division term being on the right). The other way about requires
the presence of some �central�features, as we shall see later.

Proposition (Preservation under inversion). Suppose H has a bi-
invariant metric. If h : X ! H is '-slowly varying, then the mapping
h�1 : x ! h(x)�1 is '-slowly varying. Hence the product of two '-slowly
varying functions is '-slowly varying.

Proof. Indeed, we have

dH(h('n(t))
�1h('n(z0); eH) = dH(h('n(z0); h('n(t))) = dH(eH ; h('n(t))h('n(z0)

�1);

so h(:) is slowly varying i¤ h(:)�1 is slowly varying. Using this we see that
for h; h0 slowly varying we have

dH(h('n(t))h
0('n(t))h

0('n(z0)
�1h('n(z0)

�1; eH)

= dH(h('n(t))h
0('n(t))h

0('n(z0)
�1; h('n(z0))

= dH(h
0('n(t))h

0('n(z0)
�1; h('n(t))

�1h('n(z0))

! d(eH ; eH) = 0:

Thus hh0 is slowly varying. �

First Factorization Theorem. Suppose H has a bi-invariant metric.
If h : X ! H is '-regularly varying, then, with k = @'h(t),
(i) k(t) is '-regularly varying and k(t) = @'k(t);
(ii) �h(t) := k(t)�1h(t) is '-slowly varying. Thus h(t) is the left product

of its limit function with a slowly varying function �h :

h(t) = @'h(t) � �h(t):
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Proof. For �xed n; since 'n is bounded 'm('n(:)) is, by Lemma 3 of
[BOst13], a divergent sequence, so

k('n(t))k('n(z0))
�1 = lim

m
[h('m('n(t)))h('m(z0))

�1][h('m('n(z0)))h('m(z0))
�1]�1

= lim
m
[h('m('n(t)))h('m('n(z0)))

�1

= k(t):

So k is regularly varying and, as n!1;

dH(k('n(t))
�1h('n(t))[k('n(z0))

�1h('n(z0))]
�1; eH)

= dH(k('n(t))
�1h('n(t))h('n(z0))k('n(z0)); eH)

= dH(h('n(t))h('n(z0))]
�1; k('n(t))k('n(z0))

�1)

! dH(k(t); k(t)) = 0:

That is, k(t)�1h(t) is slowly varying. �

As a converse result, we have the following.

Second Factorization Theorem If H is a Klee group, g is regularly
varying and h is slowly varying, then g(t)h(t) is regularly varying with limit
@'g.
Proof. Put hn(t) = h('n(t)) and hn = hn(e) and let k = @'g: Then

dH(gn(t)hn(t)h
�1
n g�1n ; k) = lim dH(gn(t)hn(t)h

�1
n g�1n ; gn(t)g

�1
n )

= lim dH(hn(t)h
�1
n ; e) = 0: �

To progress further we need the idea of asymptotic conjugacy in a group
(cf. [KiKu] in the context of a C�-algebra where approximate inner auto-
morphism are obtained from a sequence of unitary elements). Our analysis
is inspired by the non-commutative theory of the Haar integral (cf. [Na], Ch.
2.5). To motivate our de�nition we �rst consider a number of special cases.

Proposition. In a locally compact Klee group H, there exist divergent
sequences � = fhn : n 2 !g for which fhnah�1n g is convergent for some
a 6= eH :

Proof. We begin by observing that, for any (divergent) sequence � =
fhn : n 2 !g in a Klee group H and for any a 6= eH ;

jjhnah�1n jj = dH(hnah
�1
n ; e) = dH(hnah

�1
n ; hnh

�1
n ) = dH(a; e) = jjajj:

15



Thus, for any a 6= eH ; the sequence fhnah�1n g has a convergent subsequence;
passage to a convergent subsequence yields the conclusion. �

Of course, in an abelian group, asymptotic conjugacy is just the identity,
so convergence of the sequence fhnah�1n g holds at each a; likewise when fhng
lies in the centre Z(H); more signi�cantly, convergence holds at all points
when fhng is centrally asymptotic (i.e. asymptotic to the centre) in the two
senses captured in (i) and (ii) of the Proposition below. The summability
assumption in (ii) is motivated by a condition occurring in Kendall�s Theorem
([BGT], Th. 1.9.2 and its variants 1.9.3 & 4), namely

lim supxn =1 and limsup xn+1=xn = 1:

We recall Kendall�s Theorem: a continuous function f : R ! R for which
fanf(xnt)g converges to a continuous function of t; for some sequences fang
and fxng as above, is regularly varying. Thus here f is '-regularly varying
for the sequence 'n(t) = txn:We recall that jjhjj := dH(h; e); so that the con-
dition jjhn+1h�1n jj ! 0 (implied by the summability condition) is equivalent
to the second Kendall condition dH(hn+1h�1n ; e)! 0; when H is interpreted
as R�+, the multiplicative group of strictly positive reals.

Proposition (Centrally asymptotic sequences).
(i) If kn 2 Z(H) and dH(kn; hn)! 0; then, for all a, limhnah�1n = a:
(ii) If H is complete and hn satis�es the summability conditionX

n

jjhn+1h�1n jj <1; (2)

then, for each a, fhnah�1n g is convergent, as are f(hnkn)a(hnkn)�1g and
f(knhn)a(knhn)�1g for kn 2 Z(H):

Proof. (i) Since k�1n hn ! e and kn 2 Z(H); we have

dH(hnah
�1
n ; a) = dH(hnah

�1
n ; knak

�1
n )

= dH(k
�1
n hnah

�1
n kn; a)! dH(a; a) = 0:

(ii) Here H is complete. Using the Klee property we obtain

dH(hnah
�1
n ; hn�1ah

�1
n�1) � 2dH(hn; hn�1) = 2dH(hnh

�1
n�1; eH)

= 2jjhnh�1n�1jj:

16



For general n > m; we have

dH(hnah
�1
n ; hmah

�1
m ) � dH(hnah

�1
n ; hn�1ah

�1
n�1) + :::+ dH(hm+1ah

�1
m+1; hmah

�1
m )

� 2

n�1X
j=m

jjhj+1h�1j jj:

Thus by the summability condition fhnah�1n g is a Cauchy sequence and hence
convergent (as H is complete). When kn is in the centre, hnknak�1n h�1n =
hnah

�1
n and so again the sequence f(hnkn)a(hnkn)�1g is convergent. Likewise

f(knhn)a(knhn)�1g is convergent, as kn(hnah�1n )k�1n = hnah
�1
n : �

We now show that in the non-commutative case the points a of conver-
gence of a sequence fhnah�1n g are well-structured. The choice of sign in the
notation below is motivated by the Modular Flow Theorem to be established
subsequently.

Asymptotic Conjugacy Theorem. Let � = fhng be any sequence of
elements in a Klee group H. The sets of the points of convergence de�ned by

D+(�) : = fa 2 H : hnah
�1
n is convergentg;

D�(�) : = fa 2 H : h�1n ahn is convergentg

are subgroups of H which are closed if H is complete. On D�(�) respectively
de�ne the asymptotically inner automorphisms:

A+(�; a) := limhnah
�1
n ; and A�(�; a) := limh

�1
n ahn:

Then A+(�; �) is a continuous isomorphism from D+(�) onto D�(�) and

A�(�; A+(�; a)) = a:

In particular, a 2 D�(�) i¤ A�(�; a) 2 D�(�):

Proof. We work with the plus versions. For a; b in D+(�) we have

limhnahnh
�1
n bh�1n = limhnah

�1
n limhnbh

�1
n = A+(�; a)A+(�; b);

hna
�1h�1n = (hnah

�1
n )

�1 ! A+(�; a)
�1;

17



showing that D+(�) is a subgroup of H on which A+(�; ) is a homomorphism.
Next we show that A+(�; a) = e has only one solution, namely a = e: Indeed
we have

dH(A+(�; a); e) = dH(limhnah
�1
n ; e) = lim dH(hnah

�1
n ; hnh

�1
n ) = lim dH(a; e) = jjajj:

Thus if A+(�; a) = e; then jjajj = 0; i.e. a = e: Finally, we deduce that the
homomorphism is onto D�(�); since

dH(hnah
�1
n ; A+(�; a)) = dH(a; h

�1
n A+(�; a)hn):

Suppose that am is a convergent sequence in D+(�) with limit a: Continuity
of A+(�; �) at a follows as

0 � dH(hnanh
�1
n ; A+(�; a)) � dH(an; h

�1
n A(�; a)hn)

� dH(an; a) + dH(a; h
�1
n A(�; a)hn)

= dH(an; a) + dH(hnah
�1
n ; A(�; a))! 0:

Finally, suppose that am 2 D+(�) and that am ! a: Put Am = A(�; am) and
choose Nm so that for n � Nm

dH(hnamh
�1
n ; A(am)) � 2�m:

As
dH(hnash

�1
n ; hnath

�1
n ) � dH(as; at);

by bi-invariance, we deduce that fAmg is Cauchy. For given integers s; t;
consider any n > max(Ns; Nt); here

dH(As; At) � dH(As; hnash
�1
n ) + dH(hnash

�1
n ; hnath

�1
n )

+dH(hnath
�1
n ; At)

� dH(As; hnash
�1
n ) + dH(as; at) + dH(hnath

�1
n ; At)

� 2�s + dH(as; at) + 2
�t:

Thus fAmg is Cauchy. Suppose now that H is complete; then fAmg has a
limit, say, A: Now note that, for any m and any n > Nm; we have

dH(hnah
�1
n ; A) � dH(hnah

�1
n ; hnamh

�1
n ) + dH(hnamh

�1
n ; Am) + dH(Am; A)

� dH(a; am) + 2
�m + dH(Am; A):
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So limhnah�1n = A: That is, a 2 D+(�): �

De�nition. We say that the Klee group H is asymptotically-invariant
for � = fhng if D+(�) = H; i.e., hnah�1n converges for all a 2 H to an
automorphism of X: We say that � is inner for A+ if for some h� 2 H

A+(�; a) = h�ah
�1
� ;

in which case � will be said asymptotically equivalent to h� for A+: The latter
condition implies that h�1� hn is inner and equivalent to the identity map idH ,
since

dH(limhnah
�1
n ; h�ah

�1
� ) = lim dH(hnah

�1
n ; h�ah

�1
� ) = lim dH(h

�1
� hna(h

�1
� hn)

�1; a):

De�nition. Let g; h : X ! H: In what follows we write hn = h('n(eX))
and gn = g('n(eX)): We say h is modular if H is asymptotically invariant
for � = fhng; i.e., if for each a in H the sequence of conjugates of a in H

hnah
�1
n

is convergent. Note that

dH(h
�1
n ahn; b) = dH(a; hnbh

�1
n );

so h�1 is modular if h is. Consider the case X = H: Here idX is modular i¤
X is asymptotically invariant for ' = f'n(eX)g:We will see later that when
H is non-abelian this cannot happen. This places a restriction on which
functions h : X ! X = H that can be modular; their range must be in the
centre Z(H):

Let M = fh 2 C(H;H) : h is modular}. We give M the supremum
metric. Referring to the H-valued indicator function 1H(a) = eH ; we have
1H 2M: We put

�+(h; a) : = A+(fhng; a) = limhnah�1n ;

��(h; a) : = A�(fhng; a) = limh�1n ahn;

and term these the forward and backward (di¤erential) moduli of h (to dis-
tinguish them from the Haar integral moduli). Evidently �+(1H ; a) = a;
and

��(h
�1; a) = limh�1n ah�1n = ��(h; a):
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Lemma. Under a bi-invariant Klee metric, for all a; b; g; h 2 H;

dH(a; b)� 2dH(g; h) � dH(gag
�1; hbh�1) � 2dH(g; h) + dH(a; b):

Proof. Referring to Klee�s property, we have via the cyclic property

dH(gag
�1; hbh�1) = jjgag�1hb�1h�1jj = jjh�1gag�1h�1b�1jj

� jjh�1gjj+ jjag�1h�1b�1jj
� jjh�1gjj+ jjab�1jj+ jjh�1gjj:

Hence substituting g�1ag for a etc., then g�1 for g etc., we obtain

dH(a; b) � 2d�H(g�1; h�1) + dH(gag
�1; hbh�1):

But dH is bi-invariant, so

dH(g
�1; h�1) = ~dH(g; h) = dH(g; h): �

Proposition. Under a bi-invariant Klee metric on H the moduli,��(:; :)
are uniformly jointly continuous on M�H; when M is given the supremum
metric.

Proof. By the Lemma

dH(a; b)� 2d�H(g; h) � dH(gnag
�1
n ; hnbh

�1
n ) � 2d�H(g; h) + dH(a; b): �

Modular Flow Theorem. Let H have bi-invariant Klee metric. Then,
for h : X ! H modular (in M) the modular functions ��(h; �) are both
isomorphisms of H. M is a group with identity 1H and �+ is an M-�ow
on H, that is, for all a and all g; h in M

�+(gh; a) = �+(g;�+(h; a)); and �+(1H ; a) = a;

moreover,
�+(h;��(h; a)) = a:

Proof. We may solve for a the equation �+(h; a) = b: The solution is
a = �+(h

�1; b): Thus

��(h; ab) = limh
�1
n abh�1n = limh�1n ah�1n limh�1n bh�1n = ��(h; a)��(h; b):
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Moreover
a = limhnh

�1
n ahnh

�1
n = �+(h;��(h; a)):

Since knak�1n ! �+(k; a); we have by continuity of �+(h; �) that

�+(gh; a) = lim gnhnah
�1
n g�1n = �+(g;�+(h; a)):

This implies �rst that gh is modular, secondly that, since h�1 is modular,M
is a group, and thirdly that �+ is an algebraic �ow (i.e. without asserting
continuity). Finally, by the previous Proposition it is a continuous �ow
(whereas �� is the reversed �ow). �

Left Product Theorem. Suppose that g; h are '-regularly varying with
limit functions k and K; with g modular. Then gh is '-regularly varying
with limit

lim g('n(xz0))h('n(xz0))[g('n(z0))h('n(z0))]
�1 = k(x)�+(g;K(x)):

Proof. Writing gn(x) = g('n(x)); hn(x) = h('n(xeX)) and k = k(x); K =
K(x); then, for any z;

lim dH(gn(x)hn(x)h
�1
n g�1n ; kz) = lim dH(gn(x)hn(x)h

�1
n g�1n ; gn(x)g

�1
n z)

= lim dH(gnhn(x)h
�1
n g�1n ; z)

= dH(�+(g;K(x)); z):

Taking z = �+(g;K(x)); we obtain our result. �

Corollary 1 (Third Factorization Theorem). If H is a complete
Klee group, g is '-regularly varying and h is '-slowly varying and modular,
in particular if hn = h('neH) satis�es the summability condition (2), then
h(t)g(t) is '-regularly varying with limit �+(h; k(t)):

Proof. Since h is modular and regularly varying we may apply the
theorem. But we get more information by arguing directly as in the Second
Factorization Theorem, aided this time by the modulus of h. As before, put
hn(t) = h('n(t)) and hn = hn(e) and let k = @Xg: Now h�1 is slowly varying,
so with �+ = �+(h; �) and since a = ��(h;�+(h; a)) we have

d(hn(t)gn(t)g
�1
n h�1n ;�+(k(t))) = lim d(gn(t)g

�1
n ; h�1n (t)�+(k(t))hn)

= lim d(gn(t)g
�1
n ; [h�1n (t)hn]h

�1
n �+(k(t))hn)

= lim d(k(t); e��(�+k(t))) = 0: �
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Corollary 2. Suppose g is '-regularly varying and modular with limit
function k: Then for every '-regularly varying function h and for all x; y,
each element ��(h; k(y)) commutes with each element @'h(x): In particular,
k is central, i.e. the rangefk(x) : x 2 Xg is a subset of the centre Z(H):

Proof. With the assumptions as stated, we have, for all x; y;

�(x) := k(x)�+(g;K(x)):

Write �(:) for �+(g; :): Now � is multiplicative, so since k and K are mul-
tiplicative we have, for all x; y;

�(xy) = k(xy)�(K(xy)) = k(x)k(y)�(K(x))�(K(y))

and
�(x)�(y) = k(x)�(K(x))k(y)�(K(y)):

These equations together imply that, for all x; y;

k(x)�(K(x))k(y)�(K(y)) = k(x)k(y)�(K(x))�(K(y)):

Hence for all x; y
�(K(x))k(y) = k(y)�(K(x)): (3)

Applying the result that �+ and �� are inverse isomorphisms, we obtain

K(x)��(h; k(y)) = ��(h; k(y)K(x): (4)

According to (3), for all x; y, each K(x) commutes with each ��(h; k(y)):
Taking h(x) = x which is regularly varying with limit K(x) = x; we deduce
that, since f�+(h;K(x)) : x 2 Xg = H; we have fk(y) : y 2 Xg � Z(H):
Likewise, according to (4), we see that f��(h; k(x)) : x 2 Xg � Z(H): �

Remark. The corollary justi�es the initial guess that the product the-
orem is valid when the left factor is central. If he is inner and equivalent
to 
 the corollary says that each K(x) commutes with each 
k(y)
�1: From
here it is easy to see that if the choices k(x) = x were admitted, it would
follow that H is abelian. Thus the theorem demonstrates how restrictive
modularity is.
Corollary 3. If H is asymptotically invariant for '; then H is abelian.
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Proof. Indeed, then g = h = k = K = idH is modular; but then x2

is '-regularly varying which implies that for all x; y in H we have (xy)2 =
xyxy = x2y2 i.e. yx = xy; as asserted. �

We now restate the Proposition on centrally asymptotic sequences as a
partial converse to the Product Theorem, thereby characterizing modularity
for the regularly varying functions with our Kendall-like condition.

Theorem (�Nearly central�is modular). Let H be a complete Klee
group. Then, for h : X ! H '-slowly varying such that hn = h('neH)
satis�es the summability condition (2) and for k central, both hk and kh are
modular.

Theorem (Modular means �nearly central�). Let H be a complete
Klee group. Then, for h : X ! H '-slowly varying such that hn = h('neH)
satis�es the summability condition (2), kh is modular i¤ k is central.

4 Application: Seneta�s sequential criterion

As an application of these ideas we deduce a generalization of Seneta�s version
of Kendall�s Theorem concerning a sequential criterion for regular variation.

De�nition. fxng is a divergent C-net in X if jjxnjj diverges monotoni-
cally to in�nity and, for each x; there is n with jjxx�1n jj < C; i.e.

dX(xn; x) < C:

It is clear that Euclidean spaces have a divergent 1-net built from the corners
of an expanding sequence of cubes.

Seneta�s Theorem ([Sen], [BGT] Th. 1.9.3). Let X be a locally compact
group with right-invariant norm and let fxng be a divergent C-net in X: Let
H be a Klee group and let f : X ! H. Suppose that, for some modular
sequence an in H;

anf(�xn)! k(�);

convergence being uniform on compacts, and that k : X ! H is multiplica-
tive. Then f is regularly varying with limit function

@Xf(�) = ��(a; k(�)) = lim
n
a�1n k(�)an:

23



Proof. Let � be arbitrary. For any t; choose n = n(t) such that

d(t; xn) < C:

Now since
amf(�xm)! k(�)

on compact � sets and tx�1n lies in the C-ball around e; we may make the
substitution replacing � with �tx�1n (as jj�tx�1n jj � jj�jj + jjtx�1n jj = jj�jj +
d(e; tx�1n ) < jj�jj+ C): Thus with n = n(t)

anf(�t) = anf(�tx
�1
n xn)! k(�tx�1n );

as jjtjj ! 1 since jjxn(t)jj ! 1: We thus have uniformly in t that

hn(t) := anf(�t)k(�tx
�1
n(t))

�1 ! e:

Likewise replacing � now with tx�1n (again since jjtx�1n jj = d(e; tx�1n ) < C)
we have

gn(t) = anf(t)k(tx
�1
n(t))

�1 ! e:

Thus hn(t) and gn(t) are asymptotically central sequences. Finally,

f(�t)f(t)�1 = a�1n an � f(�t)[anf(t)]�1an = a�1n hn(t)k(�tx
�1
n )[gn(t)k(tx

�1
n )]

�1an

= a�1n hn(t)k(�tx
�1
n )k(tx

�1
n )

�1gn(t)
�1an;

or, since k is multiplicative,

f(�t)f(t)�1 = a�1n [hn(t)gn(t)
�1 � gn(t)k(�)gn(t)�1]an

! ��(a; k(�));

since��(a; �) is a continuous homomorphism. Note that this is multiplicative
in �, as both ��(a; �) and k are multiplicative. �
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