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Abstract. The Kestelman-Borwein-Ditor Theorem, on embedding a null se-
quence by translation in (measure/category) �large� sets, has two generaliza-
tions. Miller [MilH] replaces the translated sequence by a �sequence homo-
topic to the identity�. The authors, in [BOst9], replace points by functions:
a uniform functional null sequence replaces the null sequence and translation
receives a functional form. We give a uni�ed approach to results of this kind.
In particular, we show that (i) Miller�s homotopy version follows from the func-
tional version, and (ii) the pointwise instance of the functional version follows
from Miller�s homotopy version.

We begin by recalling the following result, due in this form in the measure case
to Borwein and Ditor [BoDi], but already known much earlier albeit in somewhat
weaker form by Kestelman ([Kes] Th. 3), and rediscovered by Trautner [Trau]
(see [BGT] p. xix and footnote p. 10). Below, for P a set (or property) of reals
that is measurable/Baire, we say that �P holds for generically all t�to mean that
ft : t =2 Pg is null/meagre.

Theorem 1. The Kestelman-Borwein-Ditor Theorem (KBD Theorem).
Let fzng ! 0 be a null sequence of reals. If T is measurable and non-null/Baire
and non-meagre, then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:
Furthermore, for any density point u of T , there is t 2 T arbitrarily close to u for
which the above holds.

We are concerned in this paper with what we loosely term �smooth general-
izations�of the KBD Theorem, in that some form of di¤erentiability is present in
the assumptions concerning mappings on the pairs (t; z). In a companion paper
[BOst11] we derive a common non-smooth generalization in which only continuity
is assumed (the mappings are homeomorphisms).

As to the limits of the theorem, these are best seen through terminology moti-
vated by Kestelman�s work in [Kes]. Let us say that T is universal, or respectively
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subuniversal, for null sequences if any null sequence zn has a translation t+zn which
is almost contained in the set T (i.e. all but a �nite number of its terms lie in the
set), or respectively has a subsequence in T . The theorem asserts subuniversality.
Universality occupied combinatorialists for its limitations. Thus Borwein and Ditor
[BoDi] constructed a measurable T of positive measure and a null sequence zn such
that no shift of the sequence is almost contained in T: Under Martin�s Axiom (MA)
Komjáth [Komj-1] constructs a measure zero, �rst category set T such that T is
universal, and in fact contains a translated copy of every set of cardinality less than
continuum; in [Komj-2], generalizing [BoDi], he constructs a measurable set T of
positive measure and a null sequence zn such that T fails to contain almost all of
any translate of any scalar multiple �zn. (See [Mil] for the associated literature
and for �forcing�connections with genericity.)

We are concerned in this paper with what we loosely term �smooth generaliza-
tions�of the KBD Theorem, in that some form of di¤erentiability is present in the
assumptions concerning mappings on the pairs (t; z). In a companion paper [?] we
derive a common non-smooth generalization in which only continuity is assumed
(the mappings are homeomorphisms).

Our point of view is dictated by the central role that subuniversality has in the
fundamental theorems of regular variation.

We are also concerned by a further aspect �the �pointwise�nature of theorem,
because of the sequence of points zn which is in the datum. The KBD Theorem
was �rst generalized by Harry Miller [MilH], as below, by replacing t + z with a
more general function H(t; z) (originally de�ned on R � R). We need a de�nition
(the terminology is ours).

Definition 1. (Miller homotopy, cf. [MilH]). Let U be open and let I be
a non-degenerate interval (possibly in�nite, or semi-in�nite). We call a function
H : U � I ! R a Miller homotopy acting on U with distinguished point z0 if:

(i) H(u; z0) � u; for all u 2 U;
(ii) H has continuous �rst-order partial derivatives H1 and H2, and
(iii) H2(u; z0) > 0; for all u 2 U:

Remark 1. As the function H is di¤erentiable, and hence jointly continuous,
it is natural to regard it as establishing a homotopy to the identity (albeit utilizing
a distinguished point z0 other than 0; and some interval about z0 instead of the
customary unit interval). Condition (iii) is only a non-stationarity requirement
(map z ! �z; z0 ! �z0; if H2(u; z0) < 0):

Convention. We will refer to the distinguished point z0 as the �null point�
and any sequence zn ! z0 converging to the null point as a �null sequence�. Thus
in the case H(u; z) = u+ z with z0 = 0; the sequence zn ! z0 is a null sequence in
the customary sense.

Theorem 2. Miller�s Homotopy Theorem. Let H be a Miller homotopy
acting on an open set U with distinguished point z0: Let zn ! z0 be a null sequence
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and let T � U be measurable, non-null/Baire, non-meagre. Then, for generically
all t 2 T; there is an in�nite set Mt such that

fH(t; zm) : m 2Mtg � T:

Stated thus, this too is a �pointwise� theorem, but it is noteworthy that the
substitutions,

(0.1) zn(t) := H(t; zn)� t and un(t) = t+ zn(t);

allow a functional reinterpretation of the theorem (we have used bold type to dis-
tinguish functions from points). We may regard the sequence of functions fzn(t)g;
which converge to zero (see below), as the datum and now the conclusion of Miller�s
theorem reads: ft+ zm(t) : m 2Mtg � T; or, in short,

(0.2) fum(t) : m 2Mtg � T:

Thus Miller�s Theorem becomes simply a functional version of the KBD Theorem.
We now quote one of the functional generalizations which goes beyond the KBD
setting. This involves a continuously di¤erentiable function f(:); see [BOst9] for
the proof. It will be clear from its statement that the case case f(u) = u yields the
Miller Theorem in the form (0.2). We will need several de�nitions.

Definition 2. (Uniformity - pointwise). We say that the null sequence
fzng ! z0 is a uniformly null sequence, or that zn ! z0 uniformly, if for some
positive constant K;

jzn � z0j � K2�n; for all n 2 !:

Definition 3. (Uniformity - functionwise). We say that the sequence of
functions fzn(:)g is a uniformly null function sequence on U; or that zn(:) ! z0
uniformly on U; if each zn(:) is measurable/Baire and, for some positive constant
K,

maxfjzn(u)jg � K � 2�n; for all n 2 ! and all u 2 U:

Definition 4. (Bi-Lipschitz). We call a uniformly null sequence fzn(:)g bi-
Lipschitz if the mappings t ! un(t) are bi-Lipschitz uniformly in n, i.e. for some
�; � and all n we have

0 < � � 1 + zn(u)� zn(v)
u� v � �; for u 6= v:

In particular z0n is bounded away from �1; except perhaps at countably many points.

The following theorem is proved in [BOst9] (where further improvements, mo-
tivated by convex analysis, are given); it is manifestly a �functionwise�theorem.
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Theorem 3. (Generic Re�ection Theorem). Let T be measurable/Baire.
Let f(:) be continuously di¤erentiable and non-stationary at generically all points.
Let fzn(:)g ! 0 be a uniformly null sequence that is bi-Lipschitz with

(0.3) 1 + f 0(t)z0n(t) > 0; for all n;

for generically all t 2 T: Then, for generically all t 2 T; there is an in�nite set Mt

such that

(0.4) t+ f(un)� f(t) 2 T; for all n 2Mt:

In particular, if f is linear and f(t) = �t with � 6= 0; then, for generically all
u 2 T; there is an in�nite set Mu such that

(0.5) �un(u) + (1� �)u 2 T for all n 2Mu:

Setting � = 1 in (0.5) thus yields (0.2). We will see that the apparently stronger
form �the Homotopic Re�ection Theorem �is equivalent to this.

Proposition 1. (Canonical Homotopy). Let U be an open set and let H be
a Miller homotopy acting on U with distinguished point z0: Let f be continuously
di¤erentiable and increasing on U: Then

F (u; z) := u+ f(H(u; z))� f(u)
is a Miller homotopy acting on U with distinguished point z0: In particular, the
canonical homotopy

F (u; z) := u+ f(u+ z)� f(u)
is a Miller homotopy acting on U with distinguished point z0 = 0:

Proof. This is clear since F (u; z0) = u; and F2(u; z0) = f 0(u)H2(u; z0): �

We call the particular case canonical for two reasons. In the �rst place, if
F (u; z) := f(H(u; z)) + g(u) is a Miller homotopy, then the substitution z = z0
yields g(u) = u� f(u); making the choice of g(:) unique, and H is then recoverable
from F . The second reason is even more fundamental; we defer this to the end of
the paper.

Proposition 2. (Composition Theorem). Let U be an open set and let H
and F be Miller homotopies acting on U with distinguished point z0:Then

G(u; z) := F (H(u; z); z)

is a Miller homotopy acting on some open subset of U with distinguished point z0:

Proof. AsH(u; z0) = u; by continuity, for any u 2 U; there is a neighbourhood
W � J of (u; z0), so that H maps W � J into U and W � V: The rest is clear since
G2(u; z0) = F1(H(u; z0); z0)H2(u; z0)+F2(H(u; z); z0) = H2(u; z0)+F2(H(u; z); z0) > 0:

�
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Proposition 3. Let H be a Miller homotopy acting on an open set U with
distinguished point z0: Let zn ! z0 uniformly. Put

zn(u) := H(u; zn)� u:
Then

(i) fzn(u)g ! 0;
(ii) fzn(u)g is locally uniformly null in U ,
(iii) for some large enough N; fzn(u) : n � Ng is locally bi-Lipschitz in U:

Proof. Since H1(t; z0) = 1; for any t; we may invoke the Mean Value Theorem
to write the Taylor expansion for (u; z) near (t; z0) as

(0.6) H(u; z) = t+ (u� t) +H2(t; z0)(z � z0) + o(jj(u� t; z � z0)jj):
Hence,

(0.7) zn(u) = H2(t; z0)(zn � z0) + o(jj(u� t; zn � z0)jj):
Thus the sequence has limit zero, and uniformity is clear provided u is close enough
to t:Again by the Mean Value Theorem, for some wn = wn(u; v); we have

H(u; zn)�H(v; zn) = H1(wn; zn)(u� v);
so

zn(u)� zn(v) = (H1(wn; zn)� 1)(u� v):
Hence

1 +
zn(u)� zn(v)

u� v = H1(wn; zn):

But H1(t; z0) = 1; so near (t; z0) we can ensure that 12 � H1(wn; zn) � 2: �

Remark 2. Formula (0.7) indicates that in practice fzn(u)g is close to monotonic
if fzng is (see e.g. [BGT] Section 1.7.6 for slow decrease and related matters).

Proposition 4. Let H be a Miller homotopy acting on an open set U with
distinguished point z0: Let zn ! z0 monotonically. Then the functions

hn(t) := H(t; zn)

are all homotopic to the identity, and local di¤eomorphisms, hence locally �bi-
Lipschitz�(thus preserve null sets both ways); moreover

hn(t)! t; ultimately monotonically.

Proof. Invertibility of hn follows from the Inverse Function Theorem. As
before the Taylor expansion near (t0; z0) is given by (0.6). From here we deduce
that

hn(t) = t+H2(t0; z0)(zn � z0) + o(jj(t� t0; zn � z0)jj); as t! t0 and n!1.
Thus hn is almost a shift and hn(t) ! t: The ultimate monotonicity, at any t;
follows from the continuity and positivity of the partial derivative H2 at (t; z0): �

Corollary 1. (Miller�s Theorem) The functionwise Generic Re�ection
Theorem implies the pointwise Miller Homotopy Theorem.
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Proof. Indeed, the de�nition (0.1) and the argument following it are now
justi�ed by Proposition 3. So Miller�s Theorem follows from the Generic Re�ection
Theorem by taking f(u) = u: �

Now we obtain a pointwise converse: Miller�s Homotopy Theorem implies the
pointwise Homotopic Generic Re�ection Theorem.

Theorem 4. (Pointwise homotopic generic re�ection). Let U be an open
set and let H be a Miller homotopy acting on U with distinguished point z0: Let
T � U be measurable, non-null/Baire, non-meagre and let zn ! z0: Then Miller�s
theorem implies that, for generically all u 2 T; there is an in�nite Mu such that

fu+ f(un)� f(u) : m 2Mug � fu+ f(H(u; zm))� f(u) : m 2Mug � T:
In particular, for H(t; z) = t+ z and z0 = 0, we have

fu+ f(u+ zm)� f(u) : m 2Mug � T:

Proof. By Proposition 1

F (t; z) := t+ f(H(t; z))� f(t)
is a Miller homotopy, so we may apply Miller�s Theorem to the homotopy F (t; z)
to obtain

fF (t; zm) : m 2Mtg � T:
�

A �rst homotopic generalization of the Generic Re�ection theorem may be ob-
tained by taking a function sequence zn(u) and transforming by a Miller homotopy
H. Then,

~zn(u) = H(u; zn(u))� u
is uniformly null and locally bi-Lipschitz. However, a conclusion in the form

fu+ f(H(u; zm(u)))� f(u) : m 2Mug � T
is already available, in the equivalent form

fu+ f(u+ ~zm(u))� f(u) : m 2Mug � T:
Our �nal result is obtained by replacing the f construction here by the obvious
generalization, suggested by Propositions 1 and 2, a composition Miller homotopy
F:We see below that the Generic Re�ection Theorem implies such a generalization
of itself. We thus have the following result.

Theorem 5. (Homotopic Generic Re�ection). Let H and F be Miller
homotopies acting on an open set U with distinguished point z0: Let T � U be non-
null/non-meagre and let fzn(u)g be a uniformly null sequence that is bi-Lipschitz
on U (so converging to z0). If

1 + [F2(u; z0) +H2(u; z0)]z
0
n(u) > 0; for all n;

for generically all u 2 U; then, for generically all u 2 T; there is an in�nite Mu

such that
fF (H(u; zm(u)); zm(u)) : m 2Mug � T:
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In particular, let f be continuously di¤erentiable and increasing in U; and

1 + [f 0(u)H2(u; z0)]z
0
n(u) > 0; for all n;

then, for generically all u 2 T; there is an in�nite Mu such that

fu+ f(un(u))� f(u) : m 2Mug = fu+ f(H(u; zm(u)))� f(u) : m 2Mug � T:

Proof. According to Proposition 2 the equation

G(t; z) = F (H(t; z); z)

de�nes a homotopy provided the composition is valid. Let

�zn(t) := F (H(t; zn(t)); zn(t))� t = G(t; zn(t))� t:
Thus

1+�z0n(t) = F1(H(t; zn(t)); zn(t))H1(t; zn(t))+[F1(H(t; zn(t)); zn(t))H2(t; zn(t))+F2(H(t; zn(t)); zn(t))]z
0
n(t):

Then, by Proposition 3, this is locally a uniformly null, bi-Lipschitz sequence tend-
ing to zero. Hence, the Generic Re�ection Theorem (applied with f(u) = u) yields
the desired conclusion:

ft+ �zm(t) : m 2Mug � T;
or

fF (H(u; zm(u)); zm(u)) : m 2Mug � T:
�

Remark 3. The Homotopic Generic Re�ection Theorem follows from the spe-
cial linear case f(u) = u of the Generic Re�ection Theorem. In turn the Homotopic
Generic Re�ection Theorem may be applied to F (t; z) = t + f(t + z) � f(t); for a
general f(:) to obtain the conclusion of the Generic Re�ection Theorem. Thus the
special linear case f(u) = u contains the nub; it is actually equivalent to the general
case of the Generic Re�ection Theorem. This is ultimately the reason for regarding
the homotopy in Proposition 1 as canonical.

Remark 4. There is an alternative approach to the Homotopic Re�ection The-
orem. One can adapt the proof in [BOst9] of the Generic Re�ection Theorem, as
follows. Firstly, we need to de�ne the analogue of the f-congugate; the F -conjugate
of fzm(t)g is de�ned to be

�zm(t) := F (H(t; zm(t)); zm(t))� F (t; z0) = F (H(t; zm(t)); zm(t))� t:
Secondly, as may be expected from Proposition 3, we set

fn(t) := F (H(t; zn(t)); zn(t)):

Hence

f 0n(t) := F1(H(t; zn(t)); zn(t))H1(t; zn(t))+[F1(H(t; zn(t)); zn(t))H2(t; zn(t))+F2(t; zn(t))]z
0
n(t);

so that fn(u) is increasing for u near t0 (with at most countably many exceptions)
provided

1 + [F2(t; z0) +H2(t; z0)]z
0
n(t) > 0;

since H1(t0; z0) = F1(t0; z0) = 1:
Now by (0.6) applied to F we have

fn(t) = H(t; zn(t)) + (t� t0) + F2(t0; z0)(zn(t)� z0) + o(jj(t� t0; zn(t)� z0)jj);



8 N. H. BINGHAM AND A. J. OSTASZEWSKI

since H(t0; z0) = t0: Applying (0.6) again, but now to H; we have

fn(t) = t+ [F2(t0; z0) +H2(t0; z0)](zn(t)� z0) + o(jj(t� t0; zn(t)� z0)jj):

Hence, since H2 and F2 are continuous, for u su¢ ciently close to t and n large
enough, we have the critical inequality

jfn(u)� uj �M jznj;

for some constant M: This is all that is needed for the proof in [BOst9] to proceed.

Remark 5. The overall conclusion is that all the functional re�ection theorems
are equivalent. This is because, in the limit, all the null sequences act like �rst-
order in�nitesimals added to the identity. Thus, despite its being restricted to the
pointwise case, Miller�s Theorem falls barely short of the full story. The essence of
the KBD Theorem is that it applies to a wide class of sequences homotopic to the
identity, as Miller was the �rst to observe.

Remark 6. Our topological generalization of the KBD Theorem, the Category
Embedding Theorem of [BOst11] (involving sequences of homeomorphisms), has
recently given rise in [BOst12] to a KBD Theorem for normed groups (involving
left or right translations of sequences). In view of this and in the spirit of McShane
[McSh] it would be interesting to study group analogues of the results here.
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