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Logarithmic moving averages

N. H. Bingham1 and Bujar Gashi2

Abstract

We introduce a moving average summability method, which is proved to be
equivalent with the logarithmic ℓ-method. Several equivalence and Tauberian
theorems are given. A strong law of large numbers is also proved.

Keywords: Moving averages, ℓ-method, L-method, P -method, LLN ,
Regular variation, Lambert W function.

1. Introduction

The logarithmic methods of summation ℓ and L are classical (see, for
example, Hardy [35], Ishiguro [37] - [40]). Let {sn}∞n=0 be a sequence of
real numbers. The sequence is summable to s by the logarithmic ℓ-method,
written sn → s (ℓ), if

tn :=
1

log n

n∑

i=0

si
i+ 1

→ s, (n→ ∞) (1.1)

(we write ℓx when the limit is taken through a continuous variable).

The sequence is summable to s by the logarithmic L-method, written
sn → s (L), if

1

− log(1− x)

∞∑

i=0

si
i+ 1

xi+1 → s (x ↑ 1). (1.2)
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Here we introduce a certain delayed (deferred) summability method. For
λ > 1, the sequence {sn}∞n=0 is summable by the logarithmic moving average,
sn → s (L(λ)), if

1

log n

∑

n1/λ<i≤n

si
i+ 1

→ (1− λ−1)s, (n→ ∞) (1.3)

(we write Lx(λ) if the limit is taken through a continuous variable x.)

2. Equivalence and Tauberian theorems

2.1. Results

Theorem 1. ℓ⇔ L(λ) for some (all) λ > 1.

With {an}∞n=0 defined by sn =
∑n

k=0 an, the Riesz (typical) mean R(logn)
(of order 1) is defined as

1

x

∫ x

0

{
∑

k:log(k+1)<y

ak}dy, (x→ ∞).

In view of R(logn) ⇔ ℓ (Hardy [35] Th. 37; see also §5.16), this gives

Corollary 1. R(logn) ⇔ L(λ) for some (all) λ > 1.

Note that R(logn) involves a continuous limit, but L(λ) a discrete one. This
equivalence between discrete and continuous limits is a consequence of uni-
formity, as in Theorem 2 below.

Theorem 2. If (1.3) holds for all λ > 1, then it holds uniformly on compact
λ-sets in (1,∞).

Corollary 2. sn → s (ℓx) if and only if sn → s (Lx(λ)) for all λ > 1.

Theorem 3. Let U(x) :=
∑

0≤i≤x si(i+ 1)−1. The following statements are
equivalent:

(i) U(x) = U1(x)−U2(x), with U2(x) non-decreasing and U1(x) satisfying

lim
x→∞

[U1(x)− U1(x
1/λ)](log x)−1 = s(1− λ−1), ∀λ > 1,

(ii) lim infα↓1 lim supx→∞ supθ∈[1,α][U(x)− U(x1/θ)](log x)−1 <∞.
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Corollary 3. If sn → s (ℓ), then statement (ii) of Theorem 3 holds.

The Abelian result that ℓ⇒ L is proved in [38]. The simplest Tauberian
condition for L ⇒ ℓ, and thus ℓ ⇔ L, is sn = OL(1) as proved in [39]. We
next give a Tauberian theorem establishing the equivalence between ℓ and L
methods under a one-sided Tauberian condition of best possible character.

Theorem 4. We have ℓ⇔ L if and only if

lim
λ↓1

lim inf
n→∞

min
n≤m≤λn

1

log n

∑

n≤i≤m

si
i+ 1

≥ 0. (2.1)

Let P be a probability law on the non-negative integers with mean µ > 0,
variance σ2, and finite third moment. Consider the sequence of independent
random variables Y, Y0, Y1, ..., with law P , and let S0 = 0, Sn =

∑n
k=0 Yk.

We write sn → s (P ) if

∞∑

i=0

siP (Sn = i) → s, (n→ ∞).

This is the P -method or random-walk method of summation introduced in [6],
[9], [10].

The Borel method and its relatives (Euler, Valiron and circle methods,
etc.) were studied by Hardy, Littlewood and others for their applications to
power series, as they sum more power series than the Cesàro methods. In
this regard, Hardy and Littlewood obtained a number of Tauberian theorems
from Borel-type to Cesàro-type methods. These were extended to random-
walk (P -) methods by the first author. In the next result, such results are
extended to the logarithmic method (as Cesàro convergence implies logarith-
mic convergence; see e.g. Ishiguro [38]); so too is the first author’s result in
the converse direction, again using a result of Ishiguro [38].

Theorem 5. (i) If sn = O(
√
n), then sn → s (P ) implies sn → s (ℓ).

(ii) Let P have a finite k-th moment (k = 3, 4, ...), and 0 ≤ r ≤ (k−2)/2.
sn → s (P ) implies sn → s (L) if

lim
δ↓0

lim inf
n→∞

min
n≤m<n+δ

√
n
(sm − sn)n

−r ≥ 0.
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If in addition (2.1) holds or k = 3, then sn → s (ℓ).

(iii) If there exist εn → 0 such that

1

logn

n∑

i=0

si + εi
i+ 1

= s+ o(1/n1/2 log n), (2.2)

then sn → s (P ).

Theorem 6. Let P have all moments finite. If sn = O(n1/2 logn), then
sn → s (P ) implies sn → s (ℓ).

As Riesz means are central for us, it is as well to note here that it is not
the function λ in the Riesz mean R(λ(n), 1) that is relevant as such: what
matters is the order of magnitude of its logarithm. This is the content of
the second consistency theorem for Riesz means; see e.g. [27], Ch. II and the
references cited there.

2.2. Proofs

Proof of Theorem 1. We adapt the approach of [1]. Recall first that for
a transformation σn =

∑∞
k=0 anksk, which assigns the value limn→∞ σn to

the sequence {sn}∞n=0, to be regular, by the Silverman-Toeplitz theorem it is
necessary and sufficient for the following three conditions to hold:
(i)

∑∞
k=0 |ank| is bounded for all n,

(ii) limn→∞ ank = 0, for each k,
(iii) limn→∞

∑∞
k=1 ank = 1. Let d0 := s0, d1 := s1, and

dn :=
1

logn

∑

n1/λ<k≤n

sk
k + 1

, n ≥ 2.

ℓ ⇒ L(λ). Let the sequence {tn}∞n=0 converge to s. It is clear that d0 = t0,
d1 = t1 and

dn = tn − (log[n1/λ])(log n)−1t[n1/λ], n ≥ 2.

Thus L(λ) can be seen as a transformation of the sequence {tn}∞n=0. More-
over, it is a regular transformation. Indeed, conditions (i) and (ii) are clearly
satisfied. For condition (iii) we need to show that

lim
n→∞

[
1− log[n1/λ]

log n

]
= (1− λ−1). (2.3)

4



This follows by direct calculation, or (as the function log x is self-neglecting, [18]
§2.11, [23]) from the proof of Lemma in [17].
L(λ) ⇒ ℓ. Let the sequence {dn}∞n=0 converge to (1 − λ−1)s. Note that
t0 = d0, t1 = d1, and

tn = dn +
log[n1/λ]

log n
d[n1/λ] +

log[[n1/λ]1/λ]

logn
d[[n1/λ]1/λ] + .... (2.4)

Of course, the expansion (2.4) only contains a finite number of terms, and the
final term depends on n and λ. It is important to note that the coefficients
in front of the elements dk of (2.4) have a certain pattern. The ℓ-method can
thus be seen as a transformation of the sequence {dn}∞n=0; we now show that it
is regular. Condition (i) is clearly satisfied, and also (ii) since the coefficients
in front of the elements dk are either zero or are decreasing with n. From (2.4)
it is clear that condition (iii) follows from limn→∞

∑n
k=0 λ

−k = (1−λ−1)−1. �

Proof of Theorem 2. Let (1.3) hold for all λ > 1. We can write (1.3) as

U(n)− U(n1/λ)

logn
→ (1− λ−1)s, ∀λ > 1, (2.5)

which clearly holds even for λ = 1. By introducing αn = λ−1 logn and
V := U ◦ exp, we can rewrite (2.5) as

V (λαn)− V (αn)

αn

→ (λ− 1)s, ∀λ ≥ 1. (2.6)

Since the linear function x is regularly varying of index 1, the function V
belongs to the de Haan class Π1 (see Chapter 3 of [18]). Hence the proof of
the local uniformity follows from the proof of Theorem 3.1.16 of [18] by using
αn instead of a continuous variable.

Proof of Corollary 2. By the continuous version of Theorem 2, Lx for all
λ > 1 can be written as

V (λy)− V (y)

y
→ (λ− 1)s, ∀λ ≥ 1, (2.7)

where y = λ−1 log x. From Theorem 3.2.7 of [18] it now follows that (2.7)
holds if and only if sn → s (ℓx). �
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Proof of Theorem 3. This follows from (2.7) and Theorem 3.8.4 of [18].�

Proof of Corollary 3. This follows from ℓ ⇔ Lx(λ) for all λ > 1, and
taking U2 = 0 in Theorem 3 (i). �

Proof of Theorem 4. Recall the Hardy-Littlewood-Karamata theorem for
the Laplace-Stieltjes transform ([11], or [18], §1.7): if the Laplace-Stieltjes
transform of the function G(x) is defined as Ĝ(s) =

∫∞
o
e−sxdG(x), H is

slowly varying, and ρ ≥ 0,

G(x) ∼ xρH(x)/Γ(1 + ρ), (x→ ∞) (2.8)

is equivalent to

Ĝ(s) ∼ H(1/s)/sρ, (s ↓ 0) (2.9)

if and only if

lim
λ↓1

lim inf
x→∞

inf
t∈[1,λ]

G(xt)−G(x)

xρH(x)
≥ 0. (2.10)

For G(x) = U(x), ρ = 0, H(x) = log x, (2.8) is in fact lx, which is equivalent
to l (see Corollary 2). Then (2.9) is equivalent to L. �

Proof of Theorem 5. Part (i) follows from Theorem 1 in [10], and the
fact that C1 ⇒ ℓ, with C1 being the Cesàro summability method (see pp.
59 of [35]). Part (ii) follows from Theorem 3 of [10], and the fact that
C2r ⇒ A ⇒ L by Theorem 55 of [35] and Theorem 8 of [38], respectively
(here A denotes the Abel summability method). For part (iii), note that
with condition (2.2) instead of tn = s + o(1/ logn) the proof of Theorem 2
in [38] gives (n + 1)−1

∑n
i=0(si + εi) = s + o(n−1/2), with εn → 0, and the

conclusion follows from Proposition 2 of [9]. �

Proof of Theorem 6. The sequence sn = O(n1/2 log n) is also sn = O(n2)
and thus of finite order. Corollary 2 in [9] gives P ⇔ V1, where V1 is the
Valiron method with parameter 1 (see [9] for the definition). Corollary 3
in [9] gives V1 ⇔ B with B being the Borel method. Theorem in [48] gives
B ⇒ R(log n). �
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2.3. Ordinary convergence

The prototypical Tauberian theorem is one passing from convergence of
an average (a logarithmic mean here) to ordinary convergence. Necessary and
sufficient Tauberian conditions for logarithmic convergence to imply ordinary
convergence s(.) → c have recently been given by Móricz [54]. These are of
one-sided type, and involve logarithmic moving averages, as here:

lim sup
λ↓1

lim inf
x→∞

1

(λ− 1) log x

∫ xλ

x

(s(u)− s(x))du/u ≥ 0,

lim sup
λ↑1

lim inf
x→∞

1

(1− λ) log x

∫ x

xλ

(s(x)− s(u))du/u ≥ 0,

(with one ‘lim inf lim sup |...| = 0’ condition in the complex case). These
may be compared with the ‘lim inf lim inf ... ≥ 0’ necessary and sufficient
(Tauberian) conditions for Frullani integrals in [7] §6 (cf. [18] §1.6.4).

2.4. Remarks

The analog of Theorem 1 for the Cesàro method is given in [1]. For a
certain class of moving averages and their equivalence with Riesz means,
see [17]. It is interesting to note that Corollary 1 establishes an equivalence
relation between a moving average method and a Riesz mean which is not
included in the general result of [17].

The analog of Theorem 4 for the Cesàro and Abel methods is given in [11];
for Euler, Borel, and R(e

√
n) in [11], [8] (and Karamata-Stirling in [13]); for

the Valiron Vβ and Riesz R(en
1−β

), 0 < β < 1, in [24].

There are a number of Tauberian and other theorems for the ℓ and L
methods (see, for example, [37] - [40], [44], [45], [46], [57]).

3. Law of large numbers and the Lambert W function

3.1. Results

LetW (z) denote the Lambert W function, which is defined as the solution
to the equation z =W (z)eW (z), z ∈ C (see, e.g. [28]). Also let

φ(x) := (x+ 1) log(x+ 1).
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Lemma 1. The function W (z), 0 ≤ z ∈ R, is subadditive.

Theorem 7. Let X,X1, X2, ..., be a sequence of i.i.d. random variables, and
mk ≡ E[Xk1{|Xk|≤φ(k+1)}]. The following statements are equivalent:

(i) E
[
eW (|X|)] <∞, i.e. E

[
|X|

log |X|∧1

]
<∞, or E

[
|X|

1+log+|X|

]
<∞,

(ii) Xn/(n log n) → 0 a.s. (n→ ∞),

(iii) (Xn −mn) → 0 a.s. (l),

(iv) (Xn −mn) → 0 a.s. (L),

(v) (Xn −mn) → 0 a.s. (R(log n), or L(λ), or Lx(λ), or ℓx),

(vi) 1
φ(n)

∑
1≤i≤n(Xi −mi) → 0 a.s. (n→ ∞), or with x instead of n,

(vii) 1
φ(n)

∑
φ←(β−1φ(n))<i≤n(Xi−mi) → 0 a.s. (n→ ∞), or with x instead

of n, ∀β > 1.

(viii)
∑∞

1 n−1P[|
∑

1≤i≤n(Xi −mi+n/(γ−1))| > φ(n/(γ − 1))ǫ] <∞ ∀ǫ > 0
and ∀γ > 1,

(ix)
∑∞

1 n−1P[max1≤k≤n |
∑

1≤i≤k(Xi−mi+n/(γ−1))| > φ(n/(γ−1))ǫ] <∞
∀ǫ > 0 and ∀γ > 1.

3.2. Proofs

Proof of Lemma 1. Let 0 ≤ a ∈ R and define F (z) := W (z + a)−W (z).
Then

dF (z)

dz
=

e−W (z+a)

1 +W (z + a)
− e−W (z)

1 +W (z)

=
e−W (z+a)[1 +W (z)]− e−W (z)[1 +W (z + a)]

[1 +W (z + a)][1 +W (z)]
< 0,

since W (z) is an increasing function for z ≥ 0. This means that F (z) is a
decreasing function with its maximum value of F (0) = W (a), which implies
W (z + a)−W (z) ≤W (a). �
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Proof of Theorem 7. The asymptotics of the equation z = WeW for the
Lambert W function are considered in detail by de Bruijn ([25], §2.4). From
this,

eW ∼ z/ log z (z → ∞).

So as E[eW (|X|)] < ∞ is restrictive only for large values of eW (|X|), the three
moment conditions in (i) are equivalent.
It is clear from the previous section that (iii) ⇔ (v). Note that the ℓ-method
is equivalent to

1

log(n+ 1)

n∑

i=1

si
i+ 1

→ s, (n→ ∞).

The inverse of φ(x) := (x+ 1) log(x+ 1) is φ−1(x) = −1 + eW (x). The equiv-
alence (i) ⇔ (iii) now follows from a result of Jajte [41], from the proof of
which (iii) ⇒ (ii) ⇒ (i), so (i)− (iii) are equivalent.
The equivalence of (i) and (iv) is contained in a result of Kiesel ([42], Th.,
p.196; also p.198, 203). As Kiesel points out, the prototypical results here
are those of Chow [30] and Lai [49]; cf. [31]. The proof is via symmetrization
inequalities and a Borel-Cantelli argument. The following is a slightly dif-
ferent proof of (i) ⇔ (iv) as compared to [42]. Due to the Abelian fact that
always ℓ⇒ L, we have (i) ⇒ (iii) ⇒ (iv). (iv) implies

1

logm

∞∑

k=1

Xs
k

k + 1
e−(k+1)m−1

= 0, a.s.,

where Xs
k = Xk −X ′

k, and {Xn}∞n=1 and {X ′
n}∞n=1 are i.i.d.. We define

X̃m :=
1

logm

m∑

k=1

Xs
k

k + 1
e−(k+1)m−1

, X̂m :=
1

logm

∞∑

k=m+1

Xs
k

k + 1
e−(k+1)m−1

.

Then X̃k and X̂m are independent and symmetric. Since X̃m+ X̂m → 0, a.s.,
we also have convergence in probability. From the Lévy inequality (Lemma

2 in V.5 of [33]), X̂m → 0 in probability. Since (X̃1, ..., X̃m) and X̂m are also

independent, Lemma 3 of [31] gives X̃m → 0, a.s.. Writing

X̃m =
1

logm

m−1∑

k=1

Xs
k

k + 1
e−(k+1)m−1

+
1

logm

Xs
m

(m+ 1)
e−(m+1)m−1

9



and repeating the previous argument, we obtain [(m+1) log(m+1)]−1Xs
m →

0, a.s.. By the Borel-Cantelli lemma, and the weak symmetrisation inequal-
ities (pp. 257 of [52]),

1

2

∞∑

k=1

P
[
−1 + eW (|X−µx|) ≥ k

]
=

1

2

∞∑

k=1

P [|X − µx| ≥ (k + 1) log(k + 1)]

≤
∞∑

k=1

P [|Xs| ≥ (k + 1) log(k + 1)] <∞,

with µx the median of X , and Xs = X −X ′, with X and X ′ i.i.d. This and
W subadditive give

E
[
eW (|X|)] ≤ E

[
eW (|X−µx|+|µx|)] ≤ eW (|µX |)

E
[
eW (|X−µx|)] <∞.

The equivalence (i) ⇔ (vi) when the convergence in (vi) is through the
integers n follows from Jajte’s result [41]. The equivalence (vi) ⇔ (vii) in
this case can be obtained in a similar way to the equivalence ℓ ⇔ L(λ) of
the previous section. The equivalence relations for the continuous variable x
are obtained in a same way as in Corollary 2.
We now show (vi) ⇔ (viii). Since φ(x) is a regularly varying function of
index 1, it follows from Theorem 3.2.7 of [18] that (vi), when the convergence
is through the continuous variable x, is equivalent with

1

φ(x)

∑

x<i≤γx

(Xi −mi) → 0 a.s. (x→ ∞) ∀γ > 1, (3.1)

and the convergence is locally uniform on (1,∞). By introducing the variable
y := log x/ log γ, i.e. x = γy, we rewrite (3.1) as

1

φ(γy)

∑

γy<i≤γy+1

(Xi −mi) → 0 a.s. (y → ∞) ∀γ > 1,

which is equivalent to

Zn :=
1

φ(γn)

∑

γn<i≤γn+1

(Xi −mi) → 0 a.s. (n→ ∞) ∀γ > 1. (3.2)

By the independence of random variables Xi and the non-overlapping of the
defining summations for different n, the Zn are independent. Thus by the

10



Borel-Cantelli lemma, (3.2) is equivalent to

∞∑

i=1

P[|Zn| > ǫ] <∞ ∀ǫ > 0. (3.3)

Since the law of
∑

γn<i≤γn+1 Xi is the same to that of
∑

1≤i≤γn+1−γn Xi, we
can write (3.3) as

∞∑

i=1

P



∣∣∣∣∣∣

1

φ(γn)

∑

γn<i≤γn+1

(Xi −mi)

∣∣∣∣∣∣
> ǫ




=

∞∑

i=1

P



∣∣∣∣∣∣

∑

1≤i≤γn(γ−1)

(Xi −mγn+i)

∣∣∣∣∣∣
> φ(γn)ǫ


 <∞ ∀ǫ > 0,

which is equivalent to

∫ ∞
P



∣∣∣∣∣∣

∑

1≤i≤γt(γ−1)

(Xi −mγt+i)

∣∣∣∣∣∣
> φ(γt)ǫ


 dt <∞ ∀ǫ > 0.

After the change of variable γt(γ−1) := u we obtain the equivalent inequality

∫ ∞

1

P

[∣∣∣∣∣
∑

1≤i≤u

(Xi −mi+u/(γ−1))

∣∣∣∣∣ > φ(u/(γ − 1))ǫ

]
1

u log γ
du <∞ ∀ǫ > 0,

which is equivalent to (viii). The proof of (vi) ⇔ (ix) follows in the same
way, but instead of (3.1) the starting point is its equivalent (due to local
uniformity)

1

φ(x)
max

x<k≤γx

∣∣∣∣∣
∑

x<i≤k

(Xi −mi)

∣∣∣∣∣ → 0 a.s. (x→ ∞) ∀γ > 1.

�

3.3. Remarks

We call the moment condition in Theorem 7(i) the L/ logL condition. It
expresses a little less integrability than in Kolmogorov’s strong law of large
numbers (SLLN) of 1933, where X ∈ L1, i.e. E[|X|] < ∞, is necessary and
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sufficient, and correspondingly one needs to divide by n logn rather than n in
Theorem 7 (ii). By contrast, the L logL condition E[|X|log+|X|] <∞, where
X has a little more integrability than in SLLN, occurs in various connections,
e.g. branching processes and martingale theory. See e.g. [2] I.C.10, [55] Prop.
IV.2.10, 11.

With µ := E[X ] where this exists (X ∈ L1, E[|X|] <∞), the crucial role
of SLLN (see §4.1 below) is revealed in a discontinuity in the functional form
regarding the Cesàro family Cα of summability methods (α > 0: see [35], V,
VI). For α ≥ 1, the Cα are equivalent here:

X ∈ L1 ⇔ Xn → µ a.s. (C1) ⇔ Xn → µ a.s. (Cα) (α ≥ 1).

But for α ≤ 1, the integrability required here is the more stringent L1/α:

X ∈ L1/α ⇔ Xn → µ a.s. (R1/α) ⇔ Xn → µ a.s. (Cα) (0 < α ≤ 1),

with Rp (p := 1/α) the Riesz mean studied in [14]. The case α = 1
2
, p = 2

(X ∈ L2, finite variance) is particularly important, as it occurs in connec-
tion with the Euler and Borel summability methods, as in the papers of
Chow [30] and Lai [49]. One can extend to more general moment conditions
E[ψ(|X|)] <∞, as in [17].

Our proof of Theorem 7 above is different in detail from those of these
sources, being based on the Kiesel-Jajte centring method of [42] and [41].
But it shares a number of aspects with the Chow-Lai arguments above. Our
aim in setting out the proof has been to keep the probability and summabil-
ity (or analysis) aspects separate.

While in the results above it matters crucially whether one has less or
more integrability than in SLLN, two classical results (of a different na-
ture to those above) enable one to handle both together. These are the
Marcinkiewicz-Zygmund SLLN [53] and the Baum-Katz LLN [3]; see e.g. [12]
for background and references.

We use φ(n) = (n+ 1) log(n+ 1) rather than φ(n) = n log n as in [41] to
avoid a slip made there:

E[|X|α] ≤ E[φ−1(|X|)] ≤ E[|X|], 0 < α < 1,

12



is claimed (but for 0 ≤ X ≤ 1/2 the right inequality does not hold since
E[φ−1(|X|)] ≥ 1 and E[|X|] ≤ 1/2).

The summability methods of Theorem 7 (vi) and (vii) are non-regular,
giving an equivalence between regular and non-regular summability methods
in this probabilistic setting. Parts (viii) and (ix) are the LLN of Baum-Katz
type for the logarithmic summability methods. In [50] Lai gives another re-
sult of Baum-Katz type in this context, whereas [17] has a Baum-Katz type
LLN for a general class of moving averages.

There are many analogs to parts (i)−(iv) of Theorem 7 for other summa-
bility methods. Few of them are: for the Cesàro and Abel methods [49]; for
the Borel and Euler methods [30]; for Karamata-Stirling and Jakimovski
methods [22], for the P and Valiron methods [20].

Kiesel [43] considers analogues of the law of the iterated logarithm (LIL)
for power-series methods with weights pn regularly varying with index α >
−1/2 (or α > −1 in the appendix). His interesting results do not apply to
the logarithmic case here with α = −1.

Some further problems that could be considered in this direction are: φ-
mixing case as in [12], Banach space case as in [12], negatively associated
random variables as in [21], and the ‘law of the single logarithm’ (LSL) as
in [14], [34].

4. Applications

We restrict to three, one in probability theory, two in analytic number
theory.

4.1. The almost-sure central limit theorem (ASCLT)

. Recall the two central pillars of probability theory: with X,X1, . . . , Xn

i.i.d. random variables with mean µ, Sn :=
∑n

1 Xk,

Sn/n→ µ = E[X ] (n→ ∞) a.s.
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(SLLN), and if the Xn have variance σ2,

P ((Sn − nµ)/(σ
√
n) ≤ x) → Φ(x) :=

∫ x

−∞

e−
1

2
u2

√
2π

du (n→ ∞) ∀ x ∈ R

(central limit theorem, CLT). The ASCLT combines aspects of both: taking
µ = 0, σ = 1 for simplicity,

1

logn

n∑

k=1

I(Sk/
√
k ≤ x)/k → Φ(x) (n→ ∞) a.s. ∀ x ∈ R.

Results of this type can be traced back to Lévy in 1937 ([51], p.270);
see [15] for the difference between logarithmic means (a.s. convergence) and
Cesàro means (convergence in distribution to the arc-sine law). It was proved
in the form above by Brosamler and Schatte independently in 1988. There
have been many extensions. We refer for details and references to the surveys
by Peligrad and Révész [56] in 1991, Berkes [4] in 1998, Berkes et al. [5] in
2002. Versions of the ASCLT with non-standard weights are considered (that
is, the extent to which the logarithmic method may be generalised here). It
turns out that, if limits as n → ∞ are allowed to omit an exceptional set of
logarithmic density 0, much of probability limit theory changes: for instance,
the weak (convergence in probability) and strong laws of large numbers be-
come equivalent.

Such exceptional sets of logarithmic density 0 occur in regular variation
in analysis; see e.g. [18], §2.9.

4.2. Number-theoretic densities

A subset A ⊂ N has lower and upper arithmetic densities

dA := lim inf
n→∞

1

n
|A ∩ {1, 2, . . . , n}|, dA := lim sup

n→∞

1

n
|A ∩ {1, 2, . . . , n}|,

and arithmetic density dA their common value when these are equal. The
upper and lower logarithmic densities are defined by

δA := lim inf
n→∞

1

log n

∑

k≤n,k∈A
1/k, δA := lim sup

n→∞

1

log n

∑

k≤n,k∈A
1/k,
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with the logarithmic density δA their common value when equal. Then

dA ≤ δA ≤ δA ≤ dA :

existence of d implies that of δ, but not conversely, so δ extends d. See e.g.
Tenenbaum ([58], III.1.2).

For σ > 1 and ζ(σ) :=
∑∞

1 1/nσ the Riemann zeta function, write

Pσ(A) := ζ(σ)−1
∑

n∈A
1/nσ.

If this has a limit as σ ↓ 1, this is called the analytic (or Dirichlet) density
of A (equivalently, as ζ has a simple pole at 1 of residue 1, one can use
(σ−1)

∑
n∈A 1/nσ here). Then ([58], III.1.2) A has analytic density iff it has

logarithmic density, and the two are equal.
One classical application is to Dirichlet’s theorem of 1837 on primes in

an arithmetic progression a + nb (for a, b coprime). This can be shown
to have analytic density 1/φ(b) (for φ the Euler totient function), proving
Dirichlet’s theorem that there are infinitely many such primes. Indeed, they
have arithmetic density 1/φ(b) (so the primes are equally distributed between
the residue classes), but this is harder (de la Vallée Poussin in 1896; see e.g.
Burris ([26], 9.2)).

Further applications of logarithmic density in number theory are given in
Halberstam and Roth ([29], V.5).

4.3. The Prime Number Theorem (PNT)

With Λ the von Mangoldt function, Λ(n) := log p if n = pm is a prime
power, 0 otherwise, one has

Λ → 1 (ℓx) :
∑

n≤x

Λ(n)/n ∼ log x (x→ ∞) (4.1)

(and similarly with L(λ) for ℓx, indeed uniformly on compact λ-sets in
(1,∞), by Corollary 2 and Theorem 2). Though relevant to PNT, π(x) ∼
li(x) ∼ x/ log x (with π(x) :=

∑
p≤x 1 the prime-counting function, li(x) :=∫ x

2
dt/ log t), this is far weaker. From the stronger result

∑

n≤x

Λ(n)/n = log x+O(1) (4.2)

15



(see e.g. [36], Theorem 424) one can deduce Tchebychev’s result

lim inf π(x)/li(x) ≤ 1 ≤ lim sup π(x)/li(x),

so that if the limit exists, it is 1 (see e.g. [36], Theorem 426, [58], I.1.7). But
this is still far weaker than PNT, which is equivalent by elementary means
to ∑

n≤x

Λ(n)/n = log x+ constant + o(1) (4.3)

(the constant is Euler’s constant γ, but this is not needed here: [58], I.3.6).
There is a similar hierarchy of results concerning the Möbius function µ. For
background and details, see [32].

As
∑

n≤x Λ(n)/n =
∑

p log p/p +
∑

m≥2,p≤x log p/p
m and the second sum

is convergent as x → ∞ (as one can easily check), (4.3) is equivalent to

∑

p≤x

log p/p = log x+ constant + o(1),

another form of PNT ([32], (4.3)). The weaker (4.2) is equivalent to a result
of Mertens, ∑

p≤x

log p/p = log x+O(1)

([58], I.1.4, [36], Theorem 425). See [19] for background here.
With pn the nth prime, a further equivalent form of PNT is pn ∼ n logn

([32], (4.6), [58], I Ex. 5a), which is to PNT in the form π(x) ∼ x/ log x as (ii)
is to (i) in Theorem 7. Note in this regard that the equivalent moment condi-
tions in Theorem 7(i) may be augmented by E[π(|X|)] <∞, E[li(|X|)] <∞.
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[56] M. Peligrad and P. Révész, On the almost sure central limit theorem.
Pages 209-225 in Almost everywhere convergence II (ed. A. Bellow and
R. L. Jones), Academic Press, 1991.

[57] Y. Sitaraman, A note on the logarithmic summability (L), Proc. Edin-
burgh Math. Soc., 15 (1966), 47-55.

[58] G. Tenenbaum, Introduction to analytic and probabilistic number the-

ory, 2nd ed., Cambridge University Press, 1995 (3rd ed., Introduction à
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