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1 Introduction

Copula functions link multivariate distributions to their corresponding uni-
variate marginals and allow one to study the distributional dependence of
multivariate distributions. In contrast to temporal dependence of a time se-
ries, the term distributional dependence refers to the (contemporaneous) de-
pendence among multiple time series. In finance and insurance, copulas have
recently become very popular due to two important applications.

First, copulas have been recognized as a promising tool to analyze and
model the dependence structure of credit-risky portfolios [BDNRR00], [FM01],
[ELM01], [BKS03]. The adequate modelling of dependence in credit portfolios
has been identified as one of the most important and pressing issues to be ad-
dressed in modern credit-risk management. This is partly because the pressure
of globalization has led to a significant increase of dependencies within assets
and asset classes of particular markets and between markets. For example,
many empirical studies, such as [KS96], [LS01], and [CKK02], have focused
on the so-called ”correlation break-down”. The latter refers to the significant
increases of distributional dependence between financial asset returns during
bear markets, which leads to failure of conventional diversification strategies
in times when they are most needed. In particular, the precise analysis of the
extreme (negative) returns of an asset portfolio, which depends heavily on the
dependence structure of the individual extreme asset returns, must be stud-
ied carefully as it provides important insights into the appropriate supply of
economic capital, cf. [O99].

Second, in order to manage and control portfolio credit risk, a new gen-
eration of financial instruments such as basket credit derivatives and collat-
eralised debt obligations (CDOs) has been introduced to financial markets.
The pricing and hedging of these instruments require a careful analysis of the
dependence structure between the respective underlying as well. For the ac-
tive management of portfolio credit risk, copulas have recently been applied
to model the dependence structure between default times involved in the pric-
ing and hedging of basket credit derivatives and CDOs. For example, [L00]
utilizes the so-called Gaussian copula to price first-to-default credit deriva-
tives. [LG03] and [S03] extend the copula-based pricing to other basket credit
derivatives and CDOs by applying other types of copulas.

For further application, see [DNO92] or [P01] for a time series approach
with copulas and [GGW04], who apply copulas in the framework of multidi-
mensional option pricing.

This paper provides a survey of the most important techniques of mod-
elling and measuring distributional dependence with a view towards pricing
and hedging the afore-mentioned financial instruments and towards portfolio
risk management. In the first section we present the concept of copulas and
relevant results, and we outline their importance for analyzing distributional
dependence. In passing we introduce the family of tail copulas which helps
analyzing the distributional dependence of extreme events. We then discuss
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various dependence measures related to (tail) copulas and discuss their finan-
cial applications. Afterwards we focus on nonparametric statistical inference
for (tail) copulas and dependence measures and point out that the majority
of statistical results are valid under the assumption of i.i.d. data. However, it
is well known that every real financial time series incorporates temporal de-
pendence. For example, we will show that high-frequency financial data may
possess a very characteristic seasonal and autoregressive temporal dependence
structure of its volatilities. The latter is often referred to as volatility cluster-
ing. The amount of literature on filtering techniques for time series, in order
to obtain i.i.d. data, is enormous. In practice, however, the most popular fil-
tering technique for volatility clustering of asset returns is unquestionably the
(G)ARCH filtering. Although (G)ARCH filtering usually leads to a rejection
of the i.i.d. hypothesis of the resulting residuals due to model misidentifi-
cation, its simple interpretation, estimation and forecasting has made it the
favorite filtering technique in the financial industry. (G)ARCH models have
been introduced and discussed in [B86], [DG96], and [A01].

The second part of the paper continues with the previous discussion and
investigates the sensitivity of distributional dependence measures towards de-
seasonalisation and GARCH filtering for a General Motors (GM) and Inter-
national Business Machines (IBM) high-frequency data set. Our particular
choice of the GARCH filter is justified by its afore-mentioned popularity.
High-frequency data are of interest because of several so-called stylized de-
pendence facts. We will especially focus on the distributional dependence of
extreme events.

Our results show that filtering techniques crucially affect the distributional
dependence structure and thus inherit the danger of wrong conclusions from
inappropriate dependence measures. As a side product we advocate autocor-
relation functions (ACF) based on scale-invariant (copula-based) dependence
measures and provide new insights into the interplay between distributional
and temporal dependence of multivariate time series. The discussion of a new
type of nonparametric estimator for the so-called tail dependence gives in-
sight into the dependence measurement of extreme events. We will compare
our results with the findings of [BDE03].

2 Modelling distributional dependence

Each multivariate distribution function can be split into its univariate marginal
distribution functions and a copula function (Sklar’s theorem, [S59]). In other
words, copulas allow one to study the distributional dependence structure of
random vectors irrespective of their marginal distributions.

Definition 1 (Copula). Let X = (X1, . . . ,Xd)
′ be an d-dimensional ran-

dom vector with distribution function F (x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤
xd) and marginal distribution-functions Fi(xi) = P(Xi ≤ xi) for all i =
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1, . . . , d. Then the distribution function C of the d-dimensional random vector
(F1(X1), . . . , Fd(Xd))

′ is called copula (or copula function) of X or F.

It can be shown that the copula function is uniquely determined by the
multivariate distribution function F if all univariate marginal distribution
functions are continuous (Sklar’s Theorem) and that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Thus, copulas can be utilized to build flexible multivariate distribution
functions in two steps: First, model the distributional dependence via some
copula, and second, plug in appropriate marginals.

Copula functions represent standardized distributions in the sense that
their one-dimensional marginals are uniformly distributed on the interval
[0, 1]. An important property is that the copula of a random vector X stays the
same irrespectively of any strictly increasing transformation of the marginals
Xj , j = 1, . . . , d. This invariance property (also called ”scale invariance”) is a
desired feature of dependence functions and dependence measures, as we un-
derstand dependence itself to represent the association between ”large” and
”small” realizations of random vectors irrespectively of their scale.

Kendall’s tau and Spearman’s rho. A proper dependence measures
for multivariate distributions should be scale invariant (or invariant under
change of the marginal distributions). All dependence measures derived from
the copula are scale invariant, and so in line with our basic requirement. The
most important scale invariant dependence measure in financial applications
is Kendall’s τ.

Definition 2 (Kendall’s tau). Let X and X̄ be independent d-dimensional
random vectors with common continuous distribution function F and copula
C. Kendall’s tau of the margins Xi and Xj , i < j, is defined by

τij : = IP((Xi − X̄i)(Xj − X̄j) > 0) − IP((Xi − X̄i)(Xj − X̄j) < 0)

= 4

∫

[0,1]2
Cij(ui, uj) dCij(ui, uj) − 1, (1)

where Cij(ui, uj) = C(1, . . . , 1, ui, 1, . . . , 1, uj , 1 . . . , 1).

The finite-sample version of Kendall’s tau τ̂ij is defined as the ratio of the
number of concordant minus the number of discordant pairs of sample points
with respect to the number of concordant and discordant pairs of sample
points. Here, a pair of sample points (xi, xj) and (x̄i, x̄j) is called concordant
if xi < (>)x̄i and xj < (>)x̄j , and discordant otherwise. Formally

τ̂ =
concordant pairs − disconcordant pairs

concordant pairs + disconcordant pairs
. (2)

Obviously this dependence measure is scale-invariant and it represents one of
the most intuitive dependence measures.
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The Pearson’s correlation coefficient ρ(Xi,Xj) of the i-th and j-th com-
ponent of X = (X1, . . . ,Xd)

′ measures linear dependence and is thus not
scale-invariant. However, we might intuitively substitute for the random vari-
ables Xi and Xj the standardized random variables Fi(Xi) and Fj(Xj) in
order to obtain the scale-invariant correlation coefficient ρ(Fi(Xi), Fj(Xj)).
Indeed, this dependence measure is well known and is called Spearman’s rho
ρS

ij := ρ(Fi(Xi), Fj(Xj)). It can be shown that

ρS
ij = 12

∫∫

[0,1]2
Cij(ui, uj) duiduj − 3.

In contrast to Pearson’s correlation coefficient, the latter two dependence
measures are always 1 or −1, respectively, if one random variable is an increas-
ing function (completely positively correlated) or decreasing function (com-
pletely negatively correlated) of the other. Recall that Pearson’s correlation
coefficient might be zero in both cases. A detailed treatment of copulas and
other dependence measures can be found in [J97] and [N99].

Tail dependence and tail copula. In contrast to the dependence mea-
sures discussed so far, tail dependence focuses solely on the distributional
dependence of extreme or tail events. In the context of tail dependence, the
immediate analogue to copulas, which describe the entire distributional de-
pendence structure, is given by tail copulas. In this paper we restrict ourself
to so-called lower tail copulas. However, the results hold similarly for upper
tail copulas; see [SS03] for the definition. If not otherwise stated, we assume
continuous marginal distributions.

Definition 3 (Tail copula). Let F be a d-dimensional distribution function
with copula C. If for the subsets I, J ⊂ {1, . . . , d}, I ∩ J = ∅, the following

limit exists everywhere on ĪR
d

+ := [0,∞]d\{(∞, . . . ,∞)} :

ΛI,J
L (x) := lim

t→∞
IP(Xi ≤ F−1

i (xi/t), ∀i ∈ I | Xj ≤ F−1
j (xj/t), ∀j ∈ J)

= C(xi/t, ∀i ∈ I | xj/t, ∀j ∈ J), (3)

then the function ΛI,J
L : ĪR

d

+ → IR is called a lower tail-copula associated with
F (or C) with respect to I, J .

For simplicity and notational convenience all further definitions and results
are provided only for the bivariate case. The multidimensional extensions are
given in [SS03]. The statistical inference becomes easier if the following slight
modification of the tail copula is utilized:

ΛL(x1, x2) := x2 · Λ{1},{2}
L (x1, x2), x1 ∈ ĪR+, x2 ∈ IR+, (4)

where the indices {1} and {2} can be dropped. Further, set ΛL(x1,∞) := x1

for all x1 ∈ IR+.
The next definition embeds the well-known tail-dependence coefficient (see

[J97], p. 33) within the framework of tail copulas.
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Definition 4 (Tail dependence). A bivariate random vector (X1,X2)
′ is

said to be lower tail-dependent if ΛL(1, 1) exists and

λL := ΛL(1, 1) = lim
v→0+

IP(X1 ≤ F−1
1 (v) | X2 ≤ F−1

2 (v)) > 0. (5)

Consequently, (X1,X2)
′ is called lower tail-independent if λL equals 0. Fur-

ther, λL is referred to as the lower tail-dependence coefficient.

It is well known that the multivariate normal distributions, the multivari-
ate generalized-hyperbolic distributions, and the multivariate logistic distri-
butions are lower tail-independent whereas the multivariate t-distributions
and the α-stable distributions are lower tail-dependent. For a general account
on tail dependence for elliptically-contoured distributions we refer to [S02].
Both preceding definitions show that tail dependence is again a copula prop-
erty. In particular, the tail-dependence coefficients are invariant under strictly
increasing transformations of the marginals.

Practitioners interpret tail dependence as the limiting likelihood of an
asset/portfolio return falling below its Value at Risk given that another as-
set/portfolio return has fallen below its Value at Risk.

Application: CDOs and multi-name credit derivatives. We have
already mentioned in the introduction of this paper that the increasing active
management and control (in contrast to the traditional passive management
and control) of portfolio credit risk has led to a new generation of finan-
cial instruments such as multi-name credit derivatives and collateralised debt
obligations (CDOs). Examples of these instruments are basket credit default
swaps (We refer to [BOW03] for more background reading.). Because of the
association with a pool of credit-risky underlying, the pricing and hedging of
these instruments require a careful analysis of the dependence structure be-
tween the respective underlying. In this context, copulas have recently been
applied to model the dependence structure between default times of the un-
derlying. Let us consider a portfolio of d underlying assets and let τi represent
the default time of the ith underlying (or the corresponding obligor). Further,
let Fi(t) = P(τi ≤ t) be the marginal distributional function of the default
time of obligor i. The copula function C is now used to obtain the multivari-
ate default-time distribution F (t1, . . . , td) = C(F1(t1), . . . , Fd(td)). The latter
approach allows to calibrate the default-time distribution, in the first step, for
each margin separately. This calibration is equivalent to the construction of a
so-called credit yield curve (We would like to point out that the banking sector
uses already quite sophisticated construction methods.). In the second step,
a parametric copula is usually calibrated via some scale-invariant dependence
measure such as Kendall’s tau. The optimal choice of the copula is the topic
of many recently published research papers. For example, [L00] utilizes the
so-called Gaussian copula to price first-to-default credit derivatives. [LG03]
and [S03] extend the copula-based pricing to other basket credit derivatives
and CDOs by applying other types of copulas.
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3 Statistical inference

Empirical copula. Concerning the estimation of copula functions, several
parametric, semi-parametric, and nonparametric procedures have already
been proposed in the literature (cf. [S84], [GR93], [GGR95]). Regarding the
nonparametric estimation, [D79], [D81], and [FRW02] establish weak conver-
gence of the so-called empirical copula process under independent and depen-
dent marginal distributions. In the following we will confine to the bivariate
case.

Definition 5 (Empirical copula). Consider the bivariate random sample
{(X1

i ,X2
i )′, i = 1, . . . , n}. Then the corresponding empirical copula is defined

by

Cn(u1, u2) =
1

n

n
∑

i=1

1{F1,n(X1
i ) ≤ u1, F2,n(X2

i ) ≤ u2}, (6)

where 1 denotes the indicator function and Fj,n, j = 1, 2 is n/(n + 1) times
the empirical distribution function of Xj , j = 1, 2.

Note that the empirical copula is a function of the ranks of the observa-
tions. Powerful test for independence or goodness of fit (such as Cramér-von
Mises or Kolmogorov-Smirnov) could be based on functionals of the empirical
copula. However, there does not exists a simple expression for the asymptotic
distribution of the empirical copula process

Cn(u1, u2) =
√

n{Cn(u1, u2) − C(u1, u2)}. (7)

The limiting process of (7) is derived in [S84] and [GS87] (Test of independence
based on the empirical copula process can be found in [GR03].). Analogous
limiting results, although one needs different techniques of proof, can be ob-
tained for the so-called empirical tail copula process.

Empirical tail copula. A nonparametric estimator, the so-called empir-
ical tail copula, for the bivariate lower tail-copula ΛL(x1, x2), (x1, x2)

′ ∈ R̄2
+,

is proposed. Note that nonparametric estimation turns out to be appropriate
for unknown tail copulas as no general finite-dimensional parametrization of
tail copulas exists (in contrast to the one-dimensional extreme value distribu-
tions). The choice of the empirical distribution function to model the marginal
distribution avoids any misidentification of the copula due to a wrong para-
metrical fit of the marginal distributions. Empirical investigations regarding
such misidentifications and misinterpretations of the corresponding (extremal)
dependence structure are provided in [FJS03].

Definition 6 (Empirical tail copula). Consider the bivariate random sam-
ple {(X1

i ,X2
i )′, i = 1, . . . , n} and denote the rank of X1

i and X2
i by R1

in and
R2

in, respectively. The lower empirical tail copula is defined via formula (3)
by:
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Λ̂L,n(x1, x2) :=
n

k
Cn

(kx1

n
,
kx2

n

)

=
1

k

n
∑

i=1

1{R1
in ≤ kx1 and R2

in ≤ kx2}

with empirical copula Cn and some threshold k ∈ {1, . . . , n}.
The optimal choice of the threshold k in Definition 6 is related to the usual

variance-bias problem known from tail index estimations of regular varying
distribution functions, and will be addressed in a forthcoming work. For the
asymptotic results we assume that k = k(n) → ∞ and k/n → 0 as n → ∞.

Definitions 5 and 6 can be generalized for bivariate time series. In this case
we refer to the empirical (tail) copula as quasi-empirical (tail) copula.

Condition 1 (Second-Order Condition) The lower tail-copula ΛL(x, y)
is said to satisfy a second-order condition if a function A : IR+ → IR+ exists
such that A(t) → 0 as t → ∞ and

lim
t→∞

ΛL(x, y) − tC(x/t, y/t)

A(t)
= g(x, y) < ∞

locally uniformly for (x, y)′ ∈ ĪR
2
+ and some nonconstant function g. The

second-order condition for the upper tail-copula is defined analogously.

Note that A(t) is regularly varying at infinity so this is just a second-order
condition on regular variation, cf. [DS96].

Theorem 2 (Asymptotic normality). Let F be the bivariate distribution
function of the random sample {(X1

i ,X2
i )′, i = 1, . . . , n} with continuous

marginal distribution functions F1 and F2. If the tail copula ΛL 6≡ 0 exists,
possesses continuous partial derivatives, and the Second-Order Condition 1
holds, then for n → ∞

√
k
{

Λ̂L,n(x1, x2) − ΛL(x1, x2)
} w→ GΛL

(x1, x2),

where GΛL
(x1, x2) is a centered tight continuous Gaussian random fields.

Weak convergence takes place in the space of uniformly-bounded functions on

compacta in ĪR
2
+. The covariance structure of GΛ̂L

(x1, x2) is given in Corol-
lary 1 below.

Corollary 1 (Covariance structure). The limiting process in Theorem 2
can be expressed by

GΛ̂L
(x1, x2) = GΛ̂∗

L

(x1, x2) (8)

− ∂

∂x1
ΛL(x1, x2)GΛ̂∗

L

(x1,∞) − ∂

∂x2
ΛL(x1, x2)GΛ̂∗

L

(∞, x2),

where GΛL
(x1, x2) is a centered tight continuous Gaussian random field. The

covariance structure of GΛ∗

L
is given by

E
(

GΛ̂∗

L

(x1, x2) · GΛ̂∗

L

(x̄1, x̄2)
)

= ΛL

(

min{x1, x̄1},min{x2, x̄2}
)

(9)

for (x1, x2)
′, (x̄1, x̄2)

′ ∈ ĪR
2
+.
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The proof of asymptotic normality is accomplished in two steps. In the
first step the marginal distribution functions F1 and F2 are assumed to be
known and an asymptotic normality result is derived. In the second step the
marginal distribution functions F1 and F2 are assumed to be unknown and the
asymptotic result is proven by utilizing a particular version of the functional
delta method, as provided in [VW96].

The evaluation of the empirical tail copula at the point (1, 1)′ immedi-
ately yields a non-parametric estimator for the lower tail-dependence coeffi-
cient. The estimation of the lower tail-dependence coefficient (briefly: lower
TDC) is important for practical applications, for example in risk management
where one is primarily interested in the dependence between large loss events,
and has been addresses in several publications, see [MS02], [JM02], [AK03],
[BDE03], and [FJS03]. Consider the following nonparametric estimator for the
lower TDC:

λ̂L,n(k) = Λ̂L,n(1, 1) =
1

k
·

n
∑

j=1

1{R1
in ≤ k ∧ R2

in ≤ k} 1 ≤ k ≤ n,

with k = k(n) → ∞ and k/n → 0 as n → ∞.
Under the same technical conditions as in Theorem 2 we obtain that

√
k
{

λ̂L,n − λL

} d→ GλL
,

with GλL
being centered and normally distributed, i.e. GλL

∼ N(0, σ2
L) with

σ2
L = λL +

( ∂

∂x
ΛL(1, 1)

)2

+
( ∂

∂y
ΛL(1, 1)

)2

+ 2λL

(( ∂

∂x
ΛL(1, 1) − 1

)( ∂

∂y
ΛL(1, 1) − 1

)

− 1
)

.

[SS03] prove strong consistency of λ̂L,n and Λ̂L,n if k/ log log n → ∞ as n →
∞.
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4 Dependence of high-frequency asset returns - An

empirical study

4.1 The GM-IBM high-frequency data set

So far we have surveyed important techniques of modelling and measuring dis-
tributional dependence for financial time series. We have mentioned the con-
cept of empirical (tail) copulas which is a central element for nonparametric
statistical inference from real data. We pointed out that the related results on
asymptotic normality and strong consistency are proven under the assumption
of i.i.d. data (Note that the limiting distributions are already quite compli-
cated in this case.). However, each financial time series incorporates temporal
dependence, i.e. the data cannot be assumed to be independent and identical
distributed. Furthermore, almost all common filtering techniques will lead to
a rejection of the i.i.d. hypothesis due to the usual model misidentification.

The question is therefore: How sensitive is the distributional dependence
(although the measurements are always obtained from data which are tempo-
rally dependent) towards various filtering methods?

To give a partial answer to this question we consider a typical financial time
series, namely a General Motors (GM) and International Business Machines
(IBM) high-frequency data set. High-frequency asset return data comprise
several very characteristic dependence features which are usually only found
in experimentally-generated time series, and thus they are very interesting for
our empirical analysis. Many authors have already been attracted to explore
these features. In the framework of univariate time series, [BS02], [ABDL01],
[MM01], and [AT02] investigate the estimation of the actual volatility of
stochastic-volatility models (SV) by means of so-called realized volatilities
of high-frequency data. Further, [AB97], [AB98], [DGMOP01], and [MCT02]
address the question of how to model the characteristic (volatility) seasonal-
ity and volatility clustering effects of high-frequency data. The direct fitting
of well-established financial models to high-frequency asset returns is usu-
ally complicated, due to market microstructure effects such as discreteness
of prices, bid/ask bounce, irregular trading etc. (see for example [BRT00]).
Moving-average structures for asset returns, which often occur as the result
of no-trading effects or bid/ask bounce effects, are discussed in [CLM97].

However, there is not much literature on multivariate aspects related to
high-frequency financial data; among them we mention [BS03] and [BDE03].

The plan of our statistical analysis. In the first step, we apply var-
ious filtering techniques to the afore-mentioned data set in order to obtain
approximately i.i.d. data. In particular, we utilize a GARCH filter, in order to
reduce the observed volatility clustering of the asset returns, as it is the most
popular and common filtering technique in the financial sector. In the second
step, we analyze the effect of the filtering on the quasi-empirical copula and
on the magnitude of tail dependence. In passing, we introduce autocorrelation
functions (ACFs) based on Kendall’s tau.
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The data. The data of high-frequency asset returns we utilize in this
paper correspond to the cleaned bivariate stock prices of GM and IBM over
the time horizon 4th of January 1993 to 29th of May 1998. For reasons of
market efficiency, we consider 15-minute price quotes which are aggregated
from tick-by-tick price quotes leading to a sample size of n = 36855 data. The
prices are observed each trading day during the time from 9.30h to 16.00h.
Figure 1 illustrates the log-return movements over different time intervals.
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Fig. 1. Stock log-returns for each 15 minutes for General Motors (GM) and In-
ternational Business Machines (IBM) over the years 1993-1998 (left plot) and over
January and February 1995 (right plot).

The price quotes are denoted by P j
i , i = 1, . . . , n, j ∈ {GM, IBM} and

the corresponding log-returns (briefly: returns) are defined by

Rj
i := log(P j

i ) − log(P j
i−1), i = 2, . . . , n, and Rj

1 = 0, j ∈ {GM, IBM}.

The right plot of Figure 1 zooms into the IBM return series at the be-
ginning of the year 1995 and reveals that the volatility clustering is less pro-
nounced than it is typically seen in foreign-exchange (FX) high-frequency
data, cf. [BDE03]. The volatility clusters are hardly observable solely by glanc-
ing at the plot, and so we provide the autocorrelation function (ACF) for the
returns Rj

i , the squared returns (Rj
i )

2, and the absolute returns |Rj
i |, respec-

tively, in Figure 2. Although, the characteristic trading pattern of almost
discrete changes of the price quote can be clearly seen in the right plot of
Figure 1.

From Figure 2 we learn that the returns themselves are not autocorrelated,
but the squared and especially the absolute returns show significant serial and
seasonal autocorrelation which is persistent over time. In particular, the time
series is not stationary. The latter seasonality has its origin in the contrast
between the beginning of the trading day, which shows high volatility, and the
middle, which shows low volatility. Figure 3 illustrates the average volatility
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Fig. 2. Autocorrelation function (ACF) for the returns R
j
i (left plots), squared

returns (Rj
i )

2 (middle plots), and absolute returns |Rj
i | (right plots) for GM and

IBM over the years 1993-1998 with lags ranging between 1 and 200.

over the trading day for the return series of GM and IBM. Note that from
an economical point of view, the asset returns at 9.30h accumulate much
more information than the consecutive 15-minute returns. Thus, the 9.30h
returns are often excluded from the data investigation. However, since our
primary interest lies in the dependence structure and not in the economic
interpretation, we keep the 9.30h data in our analysis.

The immediate problem arising from the latter empirical observations is
how to deseasonalize the data with respect to the observed volatility struc-
ture. Two different approaches are frequently used. We may either utilize the
concept of random time-change, as described in [DGMOP01] (which preserves
additivity of the returns over different time intervals), or we may use volatility
weighting as in [AB97], [AB98], [MCT02], or [BDE03]. In the latter framework,
the deseasonalized returns R̃j

i are expressed by

R̃j
i := c + Rj

i /vj
i , i = 1, . . . , n, j ∈ {GM, IBM},
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Fig. 3. Volatilities measured by the sample standard-deviation and corresponding
empirical confidence bounds over the trading day for returns of GM and IBM over
the years 1993-1998.

where vj
i , i = 1, . . . , n, j ∈ {GM, IBM} denote the (expected) seasonal

volatilities and c refers to the mean return. The latter volatilities could be de-
rived via some filtering technique from time series theory. A simple approach
which is often applied (see for example [BDE03]) estimates the squared volatil-
ities (vj

i )
2 by

(vj
i )

2 =
1

nτ

nτ
∑

k=1

(

Rj

k·τ(i)

)2
j ∈ {GM, IBM},

where τ(i) = imod(1day) ∈ {1, . . . , 27}, since we consider 27 observation times
(from 9.30h to 16.00h in 15-minute steps) per day, and nτ = [n/27]. The ACF
plots for the deseasonalized returns R̃j

i , provided in Figure 4, illustrate that
this approach removes the seasonality of the volatility quite well. However, the
lagged volatilities are still serially correlated, and show the typical volatility
clustering effect. Note that the absolute returns indicate the characteristic
pattern of long-range dependence.

Remark. As with the above marginal volatility weighting, we may weight
the bivariate return-vector by the expected seasonal volatility matrix. Al-
though the latter technique seems to be more appropriate for multidimen-
sional data modelling, the main results of this empirical study stay the same.

Finally, we reduce the remaining serial correlation of the volatilities of
the deseasonalized returns R̃j

i by fitting an univariate GARCH(1,1) model
(see [B86]) to each margin separately. Indeed, the GARCH(1,1) models is
the most frequently applied GARCH model in practice. Alternatively we fit
a multivariate GARCH model to the bivariate deseasonalized return series.
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Fig. 4. ACF for the volatility-weighted returns R̃
j
i (left plots), squared returns

(R̃j
i )

2 (middle plots) and absolute returns |R̃j
i | (right plots) for GM and IBM over

the years 1993-1998 with lags ranging between 1 and 200.

Regarding the latter, we utilized a diagonal VEC(1,1) model (DVEC(1); see
[BEW88]) for the deseasonalized returns R̃j

i . Both models assume the follow-
ing covariance dynamics:

Σi = A + B ⊗ (εi−1ε
′
i−1) + C ⊗ Σi−1,

where the symbol ⊗ stands for the Hadamard product (element-by-element
multiplication) and A,B,C ∈ IR2×2 (in the univariate case, B and C are
diagonal matrices). To improve our fit, we model the error terms εi via a
bivariate Student t-distribution.

Although after each GARCH filtering we must reject the hypothesis of
i.i.d. residuals, the ACFs of the residual’s covariances imply that the serial
correlation of the cross-correlations is not that significant any more. It turns
out that the residuals themselves are slightly autocorrelated over the first
lag of 15min; however, this time frame is too short for significant arbitrage
opportunities.
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Remark. According to our empirical study, the main results stay the same
irrespective of the choice of a multivariate or an univariate GARCH model.

4.2 Excursion: Analyzing the temporal dependence with Kendall’s
tau

In Figures 2 and 4 we analyzed the ACF to draw conclusions about the tempo-
ral dependence of the underlying (volatility weighted) asset returns. Especially
Figure 2 indicates that there might be an unusually large dependence between
the return data with a lag of k-days (i.e. lag= k · 27). Undoubtedly there is
a larger dependence at this special lag, but the correlation coefficient, which
can only measure linear dependence, exaggerates the magnitude enormously.
A standardization of the bivariate return data to approximately uniformly
distributed margins (via the quasi-empirical distribution function which is
again explained in formula (10) below) gives a better picture of the respective
serial dependence. Figure 5 shows that all large peaks in the ACF disappear
after this standardization. The sensitivity of the correlation coefficient un-
der monotone increasing transformations is thus misleading as to the proper
analysis of the temporal dependence structure. This is especially so if the de-
pendence is non-linear, as it is in our case. As an alternative, we advocate
a new ACF based on the scale-invariant dependence measure Kendall’s tau.
Note that the definition of Kendall’s tau requires a common continuous distri-
bution function; however, the corresponding marginal distribution functions
might be discontinuous.

Definition 7 (ACF based on Kendall’s tau). Let (Yi)i∈IN denote a se-
quence of random variables (or univariate time series). The autocorrelation
with lag j of some Yi, i = j + 1, . . . based on Kendall’s tau is defined by

τj = IP((Yi − Ȳi)(Yi−j − Ȳi−j) > 0) − IP((Yi − Ȳi)(Yi−j − Ȳi−j) < 0),

where (Ȳi, Ȳi−j)
′ is an independent copy of (Yi, Yi−j)

′ which has a common
continuous distribution function. The plot of τj against j is called the ACF
based on Kendall’s tau.

The sample autocorrelation with lag j based on Kendall’s tau is de-
fined as the sample version of Kendall’s tau derived from the realizations of
(Yi, Yi−j)

′, i = j + 1, . . . , n (see formula (2)).
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Fig. 5. ACF for the squared returns (RGM
i )2 (left plot), squared returns which are

standardized by the quasi-empirical distribution function (middle plot) and ACF
based on Kendall’s tau ACF the squared returns (RGM

i )2 over the years 1993-1998
with lags ranging between 1 and 100.

4.3 Analyzing the quasi-empirical copula

We return to our question:

How much did we change the distributional dependence structure?

Let {(X1
i ,X2

i )′, i = 1, . . . , n} denote some bivariate time series. Consider
the transformed series

{(F1,n(X1
i ), F2,n(X2

i ))′, i = 1, . . . , n}, (10)

where Fj,n, j = 1, 2, is n/(n + 1) times the quasi-empirical distribution func-
tion of Xj , j = 1, 2. We apply transformation (10) to the original GM-IBM
returns Rj

i , to the volatility-weighted returns R̃j
i , and to the GARCH residuals

of the volatility-weighted returns.
The results are illustrated in Figure 6. Note that only for the third data

set, the underlying data are approximate realization of an empirical copula
since these data are closest to i.i.d. For the second data set, the volatility
weighted returns, we could impose some ergodicity or mixing conditions to
ensure the weak convergence of the quasi-empirical copula to the correspond-
ing real copula (see for example [DMS02]). The latter seems to be not possible
for the first data set because the time series is not even stationary. However,
transformation (10) gives a better indication of the underlying distributional
dependence structure than, for example, a simple scatter plot. Although, any
interpretations from related dependence measures should be considered very
carefully.

The left plots of Figure 6 illustrate the returns Rj
i , the volatility weighted

returns R̃j
i , and the GARCH residuals of the volatility weighted returns of

GM and IBM after they have been transformed (or standardized) according
to formula (10). These plots refer to the quasi-empirical copula density. The
characteristic cross in the middle of the two upper-left plots indicates the
atomic mass of zero returns; i.e. time points where the stocks are not traded.
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Fig. 6. Quasi-empirical copula density (left plots) of the returns R
j
i (upper plots),

the volatility-weighted returns R̃
j
i (middle plots), and the GARCH residuals of the

volatility-weighted returns R̃
j
i (lower plots) for GM and IBM over the years 1993-

1998 and corresponding transformed margins F̂1(R
GM
i ) (right plots).
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Note that the copula is not uniquely defined for discontinuous distribution
functions. All other modes of the marginal return distributions, which have
been present in Figure 1, are not observable in this plot, which shows that
the latter transformation really removes the characteristics of the marginal
distributions. We would like to point out the intensifying accumulation of
data points in the lower-left and upper-right corner of all quasi-empirical
copula density plots. This feature might be an indicator for tail dependence
or, in other words, dependence of extreme events. In the next section we
solely concentrate on the problem of whether tail dependence changes heavily
after filtering. Note, that the quasi-empirical copula density of the GARCH
residuals does not possess the characteristic cross.

The plots on the right side of Figure 6 indicate the evolvements of the
transformed margin F̂1(R

GM
i ) which correspond to the respective quasi-

empirical copula density on the left side. The strong impact of the filtering
becomes quite clear in these plots. For example the characteristic trading pat-
tern of discrete percentual changes of the price quotes, as illustrated by the
lines in the upper-right plot (see also Figure 1), vanish completely after the
filtering.

Summarizing the observations, Figure 6 clearly shows that the distribu-
tional dependence structures, measured via the quasi-empirical copula, differ
completely from each other. This indicates that the filtering has a strong
impact on the analysis of distributional dependence and on the interpreta-
tional power of common dependence measures. Wrong or misleading economic
interpretations can be drawn, if no attention is paid to this basic insight (see
also [FS04] for further statistical pitfalls in dependence modelling). In order
to underpin the so-far obtained conclusions, we discuss the impact of filtering
on the estimation of tail dependence.

4.4 Analyzing the tail dependence

Because of the complicated temporal-dependence structure of the considered
GM-IBM high-frequency asset returns, we favor an estimator which does not
depend on any distributional assumptions.

Figure 7 illustrates the estimates λ̂L,n(k) of the lower tail-dependence co-

efficient (TDC) λL for various thresholds k for the returns Rj
i , the volatility-

weighted returns R̃j
i , and the GARCH residuals of the volatility-weighted

returns of GM and IBM over the years 1993-1998. According to the regular
variation property of tail-dependent distributions (see [SS03] for more details),

tail dependence is present in a bivariate i.i.d. data set if the plot of λ̂L,n(k) for
various thresholds k shows a characteristic plateau for small k. This charac-
teristic plateau is typically located between a higher variance of the estimator
for smaller thresholds and a larger bias of the estimator for bigger thresholds.
The estimate of the lower TDC and the corresponding threshold k is chosen
according to the latter plateau.
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Fig. 7. Estimates λ̂L,n(k) of the lower tail-dependence coefficient for various thresh-
olds k for returns R

j
i (upper left plot), volatility-weighted returns R̃

j
i (upper right

plot), and GARCH residuals of the volatility-weighted returns (lower plot) for GM
and IBM over the years 1993-1998.

Figure 7 indicates that the original GM-IBM returns are lower-tail depen-
dent with λ̂L,n = 0.15. The volatility weighted returns show less pronounced

tail dependence with λ̂L,n = 0.1. Finally, the GARCH residuals of the volatil-
ity weighted returns are lower-tail independent according to the absence of
any plateau; see the lower plot in Figure 7. However, the original returns and
the volatility weighted returns are by no means i.i.d. Therefore the question
is: Are the characteristic plateaus induced by the various temporal depen-
dence structures of the data? For example, [BDE03] stop after the volatility
weighting and draw several conclusions about the distributional dependence,
although their deseasonalized high-frequency data set still shows a pronounced
volatility clustering. In a forthcoming paper, we will dig into the question how
much tail dependence can be introduced into a tail independent data set by
applying certain transformation (which cause temporal dependence).

In contrast, we point out that the correlation coefficient is not significantly
different for all three data series. The original GM-IBM returns have a corre-
lation coefficient of 0.24, the volatility weighted returns possess a correlation
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coefficient of 0.23, and the GARCH residuals of the volatility weighted returns
end up with a correlation coefficient of 0.22. This again unmistakably shows
that the interpretational power of distributional dependence measures/models
(such as copulas, Kendall’s tau or tail dependence) has to be handled very
carefully if the analyzed data are not i.i.d.

5 Conclusion

In this paper, we have surveyed and advocated the usage of copulas with a par-
ticular view towards financial applications. The recently developed concepts
of tail dependence and tail copulas are presented and some new results on sta-
tistical inference are stated. The assumption of i.i.d. data, which is necessary
in order to obtain the latter results, turns out to be difficult to obtain for real
financial time series. In fact, we illustrate for the GM-IBM high-frequency
data set that the distributional dependence is very sensitive towards common
filtering methods such as GARCH filtering. We conclude that the analysis of
the distributional dependence of multidimensional financial data with tempo-
ral dependence is a rich and promising area, in which much remains to be
done.
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