Coeflicient stripping in the matricial Nehari problem
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Abstract

This note deals with a matricial Schur function arising from a completely indeterminate Nehari
problem. The Schur algorithm is characterized by a unilateral shift for a Nehari sequence.
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1. Introduction

In [12], the authors focused on a class of probability measures on the unit circle relevant to
the indeterminate Nehari problems, and established fundamental results on the correspondence
between the Nehari sequences and the Verblunsky coefficients, which are also known as the
Schur parameters. The aim of this note is to present some matricial extensions of their results,
answering an open question posed by the second author [7]. In particular, it will be shown that
the Schur algorithm is induced by “coefficient stripping” for a Nehari sequence; the term, quoted
from Simon [18], means a unilateral shift defined by dropping the first entry of a sequence.

Let ¥ be a complex Euclidean space and .# the space of square matrices of corresponding
order. Denote by 0 the zero matrix and by 1 the unit matrix in .#. As usual, a* stands for the
Hermitian conjugate of a, and the symbols @ > 0 and a > 0 mean that a is Hermitian, positive
definite and positive semi-definite, respectively. For 1 < p < oo, let L? be the standard Lebesgue
space on the unit circle T, and H? the associated Hardy space, which is a closed subspace of L”
composed of functions having natural analytic extensions into the open unit disc . Also, write
L/pfl and H /’;{ for the spaces of ./ -valued functions with entries in L” and H?, respectively. See
Rosenblum—Rovnyak [17] for the theory of matrix/operator-valued Hardy functions.

A function f in H7 is called a Schur function if f(z)*f(z) < 1 (a.e.). In the non-trivial case,
it yields a sequence of Schur functions fi, f>,... (fi = f) via the Schur recurrence formula

fo1 = OO — @)X =y f) 7 (o)) (1.1)

L

n’

(pi)*pﬁ =1- than’ Pf(Pf)* =1- ana:L'

with the Schur parameters @, = f,(0) and subordinate matrices pL, of obeying
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Here, ok, oX are unique up to constant unitary factors, and usually chosen so that pZ > 0, pf > 0.
On the other hand, a Schur function f is associated with a measure u, defined on T and taking
values in the positive semi-definite matrices in .#, via the Herglotz formula

€+Z

A +zf@)A-zf(2) " = f 7 —du  (zeD),
TEé —Z

and this association f < u is a one-to-one correspondence between the set of Schur functions
and the set of measures on T normalized so u(T) = 1. For such a measure u, one may define the
M -valued orthogonal polynomials with respect to the .# -valued “inner products”

e ¥ = f pduy”, (e yYMr = f @ duy.
T T
The Geronimus theorem states that, in the non-trivial case, the orthonormal polynomials

¢k = Kkl" +lowerorder, (@b, oL =6ml, Kb ={(of - pheD))
R = kf" +lowerorder, (R ofNr =6ml.  &F = {50!

obey the Szegd recurrence formula

L ' % L * RNt
WP, = (pn+1) P+l + a’n+1((pn)l’ Z‘pn = 90n+1(pn+1) + (‘pn) a’n+1’

where ¢ is the reversed polynomial of ¢, defined by ¢'(z) = z"¢(1/Z)* if deg(¢) = n. In this
case, pk, p are sometimes chosen so that k& > 0, k® > 0. See Damanik—Pushnitski—Simon [8]
for details and background, and also Simon [18, 19] for further information.

Let g be a function in HJI” having invertible values (a.e.). It admits the polar decompositions
g = u(g*9)""?* = (gg")"?u, where u is the unitary factor, and the allied factorization g = g;gr
with a pair of functions g;, gr in H/Z/{ satisfying g7g, = gpgk- Then g is called rigid if the
functions in H/l/[ sharing with it the same unitary factor u are of the form g;kgg for a constant
matrix £k > 0. Let m be the normalized Lebesgue measure on T, and write du = wdm + dus,
where y; is the singular part. If the Szegd condition log det(w) € L' is fulfilled, there is a unique
pair of outer functions &, hg in H? , called Szegd functions, such that

w=hih;, = hphy, h; (0) > 0, he(0) > 0.
This note is mainly concerned with a measure y such that
s =0, log det(w) € L, hyhg is rigid, (1.2)

which goes back to Levinson—-McKean [15]. See Kasahara—Inoue—Pourahmadi [14] for a general
concept of . -valued rigid functions and its application to #'-valued stationary processes.

Lety = (y1,72,...) be a sequence of matrices in .#. The problem of finding the functions
in the unit ball of LY with y as negatively-indexed Fourier coefficients is called the Nehari
problem after Nehari [16] the Nehari theorem states that a solution exists if and only if an infinite
block Hankel matrix ()/,J,_,_l)l.’j:1 acts as a contraction on the £2-space of #-valued sequences.
In the so-called completely indeterminate case (see Section 3 below), the problem was fully
solved by Adamjan [1], extending the work of Adamjan—Arov—Krein [2], as follows: There is a
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unique Schur function f which corresponds to a measure p obeying (1.2), and the solutions ¢ are
parametrized by Schur functions £ in such a way that

¢ =) hy + hy (1= zEA - 2fO)™ = A = zf) YA = 2.

See also Arov [3], Arov-Fritzsche—Kirstein [6] and Arov—Dym [4] for relevant results, and
Arov-Dym [5] for a textbook account on the Nehari problem.

A sequence y will be called a Nehari sequence if it gives rise to a completely indeterminate
Nehari problem. Adamjan’s result defines a one-to-one correspondence y <> f between the set
of Nehari sequences and the set of Schur functions restricted by the condition (1.2) for its p. As
will be shown later, if (y;,7y»,...) is a Nehari sequence, (y»,73,...) is also a Nehari sequence.
Hence, a sequence of Schur functions f, f>, ... can be derived from y by coefficient stripping,
namely, via (¥, ¥u+1, - -.) < fu- They enter the Schur algorithm in the following way.

Theorem 1.1. Lety = (y1,7»,...) be a Nehari sequence, with associated Szegd functions hy, hg.
Then the Schur functions fi, f2, ... obtained by coefficient stripping satisfy the Schur recurrence

formula (1.1), where pL, p® are determined by the condition

K5h, (0) > 0, hp(0)KE > 0. (1.3)

From the viewpoint of coefficient stripping for the Schur parameters, the above relation may
be regarded as a correspondence (yy, ¥u+1s--.) < (@, @i, - ..). The condition (1.3) should be
compared with the standard choices

pk>0, pf>o0, kE>0, &>o0.

Notice that (1.3) is not a choice but an outcome from coeflicient stripping for a Nehari sequence;
however, the correspondence y <> f depends on a choice iy (0) > 0, hz(0) > 0. In the language
of orthogonal polynomials, (1.3) means that

UGN R R >0, (', ()Y > 0,

which might be viewed as a natural choice; hzl, h1_e1 are the “limits” of ()", (¢®)" as n — oo,
The following is a fundamental result on the inheritance of property (1.2) under coefficient
stripping for the Schur parameters (a1, @a, . ..). Note that pt, oR can be freely chosen here.

ns

Theorem 1.2. Let fi, f>,... be Schur functions obeying the Schur recurrence formula (1.1).
Then either all of them correspond to measures satisfying (1.2), or none of them do.

After some preparation in Section 2, the above theorems will be established in Section 3. In
Appendix, a few simple examples will be given in order to illustrate the correspondence

vy=01,Y2,...) © a=(a,q,...).

The latter is interpreted as the partial autocorrelation function in the finite prediction problem
for a ¥ -valued stationary process, and a Nehari sequence plays a crucial role there if the spectral
measure satisfies (1.2). In particular, @, can be expressed in terms of (y,,¥n+1,...) and also
h1(0), hg(0), subject to K,LL > 0, Kf > 0, see Inoue—Kasahara—Pourahmadi [11]. Recently, the
authors [13] proved Baxter’s theorem which asserts that y is summable if and only if so is a.
These results mostly answer an open question posed by the second author [7], while an important
problem remains open: Strong Szegd theorem with a Nehari sequence.
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2. y-generating matrices

In this section, we prepare some basic matters on the y-generating matrices, which are useful
for studying completely indeterminate Nehari problems. Details and proofs omitted here can be
found in Arov—-Dym [5] and Dubovoj—Fritzsche—Kirstein [9].

Let 7 be a complex Euclidean space and .# the space of square matrices of corresponding
order, in which a matrix a is assigned the Euclidean norm ||a||.» as a bounded linear operator
x — axon 7. The following three conditions are equivalent:

lall.z < 1; a‘a<l, aa* < 1.

For 1 < p < oo, let L? be the standard Lebesgue space on the unit circle T, and H? the associated
Hardy space, which is a closed subspace of L” composed of functions having analytic extensions
into the open unit disc D. Also, let N* be the Smirnov class, which is an algebra of all quotients
&/n with functions &, 7 in H*®, where 7 is outer. These three kinds of spaces meet in

H? =P NN*.

Let L/’;l, H/Zz and NJ;[ denote the spaces of .4 -valued functions with entries in L”, H? and N*,
respectively. By introducing an appropriate norm, L/’;l becomes a Banach space with H/’/’( aclosed
subspace. As for Lj;[, set

1flls, = esssup{llf@lLa |z € T).

Let § 4 be the set of Schur functions, in other words, the unit ball of H;; For a function fin S 4,
the following three conditions are equivalent:

log(1 = |Ifll.z) € L'; logdet(1 — f*f) € L'; logdet(1 — ff*) e L.

Recall that the Herglotz formula defines a one-to-one correspondence f < u between S, and
the set of measures on T with u(T) = 1. With du = wdm + du; as before, the Szegd condition
log det(w) € L' is equivalent to one (hence, all) of the three conditions just mentioned. For this
reason, log(1 — ||f]l.z) € L' will also be called the Szeg condition.

A 2 x 2 block matrix A with entries in .# is called J-unitary if A*JA = J, where

1 0
/= ( 0 -1 ) :
It brings the fractional linear transformation 74 defined by

Ta(x) = (ax+b)cx+d)™" with A =( ccz Z ),

which acts as a bijection from the unit ball of .Z to itself; cx + d is invertible if x lies in the ball.
If A and B are J-unitary, AB is also J-unitary, and T4 = T4Tp. Notice that A is J-unitary if and
only if A* is so. These basic matters can be found in [5, Sections 2.2 and 2.3].

According to Arov [3], a y-generating matrix 2l is a matrix-valued function on T of the form

a;, b}
(%)
by ag
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where ay, ag, by, bg are functions in N*

V7> av, ag are outer, and 2 has J-unitary values (a.e), so

* * _ * * -1 _ -1
aja, — b b, =1, agay —bpbp =1, bya;’ = ag bg.

1

Puty = —b,a;' = —ay'by. Then the functions a;',a;' and y lie in S, in view of

1-x'x =@ @),  1-xx" = (@ag")ag)".

Also, since a;, and ag are outer, y satisfies log(1 — ||v|l.») € L'. Such a function y can be traced
back to a y-generating matrix 2, which is unique up to a constant unitary block-diagonal left
factor depending on the choice of a; and ag. A y-generating matrix 2 is called normalized if
ar(0) > 0, ag(0) > 0, b, (0) = 0 and bg(0) = 0. Every y-generating matrix can be normalized by
multiplying by an appropriate constant J-unitary matrix on the right. The important point here is
that all the functions in Tg(S ) have common negatively-indexed Fourier coefficients. Indeed,
the difference of two functions in Tg(S,) is analytic: For any Schur functions &, n,

To(&) — Ta() = a; 1A — x&) ™" —n( -y Yag'.

A y-generating matrix % is called regular if To(Sy) = Tos(Sx) whenever To(Sy) C T (Sx)
holds for a y-generating matrix ‘B (cf. [3, Theorem 3]). As one might expect, the solution set
of the Nehari problem in question can be expressed as Ty (S ) for some regular y-generating
matrix . Moreover, 2 can be normalized without changing its range since Tye(Sz) = Tou(Sz)
holds for every constant J-unitary matrix €. See [5, Section 7.2] for more information.

It is convenient to parametrize normalized y-generating matrices as follows.

Lemma 2.1. Between the normalized y-generating matrices A and the Schur functions f obeying
the Szegd condition log(1 — ||fll.x) € L', there is a one-to-one correspondence

* Sk
_ ( s~z
2y SR

) o f= tLSZl = Sl_eltR,

via functions s, Sg,tL, g in N/;{ such that sy, sg are outer, sg(0) > 0, s,.(0) > 0, and
5 % _ * * -1 _ ~1
spsp =ttt =1, SgpSp — Iptp =1, 18, = Sg g

In this case, Szegd functions hy, hg of u corresponding to f can be expressed as

hy=(sp—zt)™",  hg=(sg—2tr)"". 2.1)

Proof. The correspondence 2 « f is plain except for the following point: If f obeys the Szegd
condition, there are unique outer functions sy, sg € N/;/ with s;(0) > 0, sz(0) > 0 such that

spsp = A= N7 spsp == 1
(cf. [5, Section 3.16]). As for Szegd functions, notice that both s; — zf; and sg — zfg are outer
because 1 — zf is so. Since w = hj h, = hyhy imply
hhy = A =2f " A= £ HA =2 = (s =2 s —2) 7"
hghy = (1 =2) (A= FFOA =27 = (sg = 2tp) " (53 = 2tR) s

the last statement follows from the uniqueness of outer functions. O
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Accordingly, a normalized y-generating matrix 2l and a measure u with the Szeg6 condition
log(w) € L' are associated with each other, via a Schur function f obeying log(1 — ||f|l.») € L'.
Recall du = wdm + du,, where u; is the singular part. Since w = hjh;, = hyhy, the product i, i,
admits the polar decompositions h, h, = u (hyhy,) = (h, h}) u with the unitary factor

u=h,(hy)™" = (1) hp.

Arov-Dym [4, Theorem 5.5] showed that 2 is regular if and only if u; = 0 and index{u} = 0,

which means the following property: If two functions g, , g, in Hfﬂ have invertible values (a.e.)

and satisfy u = (gZ)‘l 8g- they are expressed as g, = h, c*, g, = ch, with an invertible matrix c.
The regularity can also be characterized by rigidity of the product of Szegd functions.

Lemma 2.2. A normalized y-generating matrix A is regular if and only if u satisfies (1.2).

Proof. Tt is to be shown that index{u} = 0 if and only if & hg is rigid. Let g be a function in H/lﬂ
having invertible values (a.e.). It can be expressed as g = gy gr, Where g;, gg lie in H/z/[ and obey
818, = &r&r (cf. Helson-Lowdenslager [10, Theorem 10]). Then (g’i)‘lgR is its unitary factor.
Thus, if index{u} = 0 holds, u = (g’i)’lgR makes g = h; (c*c)hy, with ¢ invertible, so &, hy is rigid.
For the converse half, let u = (gZ)‘lgR. If h, hy, is rigid, g, g, = h, khy for some k > 0, whence

8181, = hykhy, 8r8r = hrkhp.

Further, g, gx is also rigid, and g;, gg are outer (cf. Kasahara—Inoue—Pourahmadi [14, p. 294]).
Hence, g, = h,c] and g, = czxh, hold for constants ¢, , c, with k = ¢jc; = cjc, but these lead
to ¢;'c, = Mjuhy' = 1,50 ¢, = cg, concluding that index{u} = 0. O

3. Nehari problem

In this section, we discuss coefficient stripping in a completely indeterminate Nehari problem,
and prove Theorems 1.1 and 1.2. See Arov—Dym [5] for a textbook account of the problem.

Lety = (y1,72,...) be a sequence of matrices in .#. The Nehari problem is formulated as
the problem of finding the functions in the unit ball of L%, having y as negatively-indexed Fourier
coeflicients, that is, describing the solution set

N(Y)Z{KﬁGLZ ‘ lIpllz=, Slandyszqubdmfork: 1,2,...}.
‘ T

In the solvable case, the mean values of the solutions form a matrix ball, namely,

{f¢m4¢eﬁﬂw}={C+nxmlx€w¢MMUzSH
T

for some matrices ¢, ry, rg in .4 with rp, > 0, rg > 0. The problem is called determinate if it has
a unique solution, so indeterminate otherwise, and completely indeterminate if rp, > 0, rg > 0.
Let us call y a Nehari sequence if it provides a completely indeterminate Nehari problem. As
the name indicates, a y-generating matrix 2 actually generates a Nehari sequence y such that
To(S#) C N(y), that is,

n=ffm@Wn k=1,2,...,
T
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where ¢ is a Schur function, and y does not depend on the choice of & (cf. [5, Theorem 7.22]).

A fractional linear parametrization of the solution set of a completely indeterminate Nehari
problem was obtained by Adamjan—Arov—Krein [2] in the scalar case, and by Adamjan [1] in
the matrix/operator case. To spell it out, for a Nehari sequence 7, there is a unique normalized
regular y-generating matrix 2 such that

N =TalSx).

Notice that, by Lemmas 2.1 and 2.2, y is associated with a Schur function f, and its measure u
satisfies (1.2). In fact, the fractional linear transformation Tg was originally derived from

Ta(@) = (h) ™ hg + (1= 2 HEA = 2fO7 = A= 2f)7 VA = 2y, 3.1

where Ay, hg are Szegd functions of u. A solution Ty((£) becomes a unitary factor of some rigid
function in H/'/{ (in other words, index{Ty(£)} = 0) if and only if £ is a constant unitary matrix.
As for the matrix ball stated above,

c= fT(hZ)’IhRdm — (h; hp)(0), ryp = h;(0), rg = hg(0).

To parametrize the interior of the matrix ball, write

Dy ={{ e ANl <1}
A Nehari sequence has the following one-step extension.

Proposition 3.1. Let y = (y1,7%2,...) be a Nehari sequence, f its Schur function, and hy, hg the
associated Szegd functions. Also, let { € D and define

oc = [ 1) = 1, 01 = D0

Then ¥ = (w¢, 1,72, - - .) is a Nehari sequence, and its Schur function f is expressed as

F=@p e -a-hH "o

where py, pg are determined by the condition

por =1-4C, h; (0)p,, > 0, pPror =1-47¢, Prhg(0) > 0.
Proof. Let 2 be a normalized regular y-generating matrix for vy, so N(y) = Ty (S ), and write
s, -t ™" og! )
A= L L, c=( L R
( —Up S ) ( STt PR

It follows from (2.1) that
p7's,(0) >0, sp(0)pr" > 0.

Using the product ¢, define a normalized y-generating matrix Dt by

ax D a% =P
me:( oL ‘tL) é{:( oL ‘”L)
—tR Sp —ztR Sp



in which

{sL = ppMsp — aty) {fR = (sr = 2ROPE’ (3.2)

fr = (pR) (@t — I sp), fr = (2t — v}
Then zTg (1) = Tye(zl). Also, & = Te(z1) lies in § 4 and satisfies £(0) = £. Hence, by (3.1),

fT T (V)dm = fT To(€)dm = fT (1) hpdm — hy (0)(1 — £(0))hg(0) = wy,

and N(y) = Ty (S ) implies that, for k = 1,2,...,

fT T (Dt = fT FTa@d = .

Thus, T4 (S#) € N(9), and ¥ is a Nehari sequence (cf. [5, Theorem 7.22]). To prove the opposite
inclusion, take a solution ¢ from N(¥). Since z¢ lies in N (y), there is a function 5 in S such
that z¢ = To(n7), and the value n(0) = ¢ is evaluated from

wg = f zpdm = f Ty (mdm = f (h}) ™" hgdm — hy (0)(1 = 7(0))hg(0),
T T T
so that 77 = zT¢-1(17) is a Schur function:
i=2Ter(n) =2"p (n = DA =L'm)7 pi.

Then To () = Toe(zi) = 2T (), and ¢ = T4 (77) shows that N(¥) C T (Sx). Consequently,
N@) = Tg(Sx), and 2 is a normalized regular y-generating matrix for ¥. To complete the proof,
use Lemma 2.1 to write down f = 7, §;! in terms of f =1, s7". O

Theorem 1.1 will be proved using the following basic facts. Recall w, from Proposition 3.1.

Lemma 3.2. Lety = (y1,7%2,...) be a Nehari sequence. Then the following hold:

(1) ¥ = (y2,v3,...) is a Nehari sequence.
(i) ¥ = (w,Y1,Y2,...) is a Nehari sequence if and only if w lies in {w; | { € Dy).

Proof. Let 2 be a normalized regular y-generating matrix for vy, so N(y) = Ty (Sx).
(i) 7y is generated by a y-generating matrix B such that 77 (1) = T (z1); it is obtained by

91:( s} —ZIZ)’ %:( sy —r;).

—zlg SR —Ip g

(ii) If % is a Nehari sequence, it is associated with a normalized regular y-generating matrix 2.
Since z74(1) lies in N(y), there is a function £ in § 4 such that 7T (1) = Ty(€). By (3.1),

w= fT T ()dm = fT To(&)dm = fT () hgdm — by, (0)(1 = £(0))h4(0).

Here, £ is not a constant unitary matrix since 75 (1) = (ﬁ;)‘lﬁR shows that 7T (1) is the unitary
factor of a non-rigid function zfz,ﬁR, where /1 1o ﬁR are Szegd functions associated with . Hence,
w lies in {w; | { € D4}. The other half has been established in the previous assertion. L]
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Proof of Theorem 1.1. Lety = (y1,7»,...) be a Nehari sequence, and h;, hg the associated Szegd
functions. By Lemma 3.2 (i), (¥4, ¥n+1, - - -) remains a Nehari sequence for every n = 1,2,....
Therefore, each of them has a Schur function f, and the associated Szegd functions i, h¥. Since
Yns> Yu+1s - - -) 18 @ one-step extension of (V,+1, ¥Yn+2, - - -), by Lemma 3.2 (ii),

Y= [ R = B O = O )
for some matrix £ in D 4. Then, by Proposition 3.1,

fo = @DV @ = YA = L2f, ) PE

L pR are determined by the condition

where p;;

PRy =1=40, B, Opr >0, ek =1-07¢ prhf,0) >0,
and the parameter a,, = f,(0) satisfies @, = —{(0®)*}1¢*pL = —pR*{(0L)*}!, whence
ED'pr =1=aa,,  pie) =1-a,a,
The above formula is inverted as the Schur recursion (1.1). Also, by (2.1) and (3.2),

hy(0) = iy O, hi(0) = ph, (0).
Thus, by induction, (1.3) holds. ]
Theorem 1.2 will be proved using the following basic fact.

Lemma 3.3. Let y be a Nehari sequence, f its Schur function, and hy, hg the associated Szegd
functions. Also, let ur,ug, vy, vg be constant unitary matrices such that

urhy(0O)yvg > 0, vihr(Q)ug > 0.
Then % = upyug is a Nehari sequence, and it corresponds to a Schur function f = v fvg.

Proof. Let 2l be a normalized regular y-generating matrix for vy, so N(y) = Ty (S4). Write

o = ur 0* ’ A= s =z , 9 = VR 0* ’
0 u —2t, Sp 0 v

L
and set A = UAY. Then T5(Sx) =TyN(y) = N(¥), and (2.1) shows that
Vs, (0)u; > 0, upsgp(0)v; > 0.

So, ¥ is a Nehari sequence (cf. [5, Theorem 7.22]), and 2 is its normalized regular y-generating
matrix. By Lemma 2.1, ¥ corresponds to f = vy fvg. O

Proof of Theorem 1.2. Let f be a Schur function with @ = f(0) lyingin D 4. Set

="' (f—A - f)'p;



after taking some matrices p,, p, such that pjp, = 1 —a"@ and p,p; = 1 — aa”. It is enough
to consider these two Schur functions. Write y, /1 for the corresponding measures. First, assume
that u satisfies (1.2). Pick oy, 0r so that

00, =1-a"a, /’ZL(O)QZI > 0, opor = 1-q,a;, Q;elhR(O) > 0,
where hy, hg are Szeg6 functions of u. Then there are constant unitary matrices v;, vg such that
f=vl0g (f ) = o ) 0] vy

So, by Theorem 1.1 and Lemmas 2.1, 2.2 and 3.3, [ satisfies (1.2). Let us reuse oy, 0r, VL, Vg for
other constants. Assume that [ satisfies (1.2). Also, let i, hg be its Szegd functions, and put

{= _PLOZ*(IQ;Y1 = _(pZ)fla’*PR,
which lies in D4 and obeys p, p; =1 - " and ppp, = 1= *{. Pick o, , 04 so that
0,0y =1-00, (00, >0, orog=1-0"C,  oghp(0)> 0.
Then, for some constant unitary matrices v, vg,
f=vilp)™ @f = )@ = &2y o v

Hence, by Proposition 3.1 and Lemmas 2.1, 2.2 and 3.3, u satisfies (1.2). O

Appendix. Examples

Let us write a, = —a;,, the Verblunsky coefficients in the Szegd recurrence formulas

ok =k ) ek + ann (@) O =zl + (@8 an MR, )

where ¢ stands for the reversed polynomials of ¢, as before. By repeated use of Proposition 3.1
with a fixed parameter £ in D 4, from the free case 0), one can construct the following Bernstein—
Szegd models 1), 2), 3) of degree 1, 2, 3, respectively, illustrating the correspondence between
a=(ay,ay,...)and y = (y1,¥2,...) under the condition (1.3).

0) f)=0
a=00,0,..) < y=(0,0,..)

D fl&=-¢
a=(0,0,..) o y=(00,..)

2) f@ =~ A +z2D)A+2) !
a=(,4,00,..) o y=((-{00,..)
3) f(@) =~ + 20+ {0+ 2VA + 2248 + 200!
a=({.0400,..) o y=C-3{+20E0-00.4,0,0,.)
10
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