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PART I: RANDOM WALK ON EUCLIDEAN SPACE

§1. Introduction.

The theory and applications of random walks are ubiquitous in the modern prob-
ability literature, and random walks form perhaps the simplest and most important exam-
ples of stochastic processes - random phenomena unfolding with time. The term ‘random
walk’ can be traced back (at least) to Pólya (1921) (‘zufällige Irrfahrt’ in the German),
but the context is much older. If we think of X1, X2, . . . as the gains or losses of a gambler
on successive plays of a gambling game, and the partial sums

Sn := X1 + · · ·+ Xn (S0 := 0)

as his cumulative gain or loss to date (by time n), then the behaviour of the stochastic
process (Sn)∞n=0 - the random walk with steps Xn - describes the evolution of the gambler’s
fortune. In the gambling context, analysis of such aspects as the duration of play (when
the player has finite capital), probability of eventual ruin etc., goes back to Pascal and
Huyghens in the 17th century. For a detailed account of such work, see the classic 19th
century history Todhunter (1949); for a modern treatment, see the classic text of Feller
(1968), XIV.

§2. Simple random walk on ZZ. The simplest non-trivial case is to let X1, X2, · · ·
represent the outcomes of a succession of independent tosses of a fair coin. Suppose the
gambler bets on heads, and gains +1 for each head and (by symmetry) loses one on each
tail. Then Sn represents his cumulative gain or loss on the first n plays; (Sn)∞n=0 is called
simple random walk (on the lattice, or on ZZ). Even this deceptively simple process contains
many surprises if its behaviour is analysed in detail. Results include:
1. The walk returns to its starting position at time 2n with probability

u2n := P (S2n = 0) =
1

22n

(
2n

n

)
.

One has

u2n ∼ 1√
πn

(n →∞),

by Stirling’s formula. The generating function is

U(s) :=
∑∞

k=0
uksk =

∑∞
n=0

u2ns2n = 1/(1− s2)
1
2 ,
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since u2n = (−1)n
(− 1

2
n

)
(Feller (1968), XI.3(b)).

2. The walk eventually reaches each integer with certainty (and so, reaches it infinitely
often). In particular, if S0 := 0 and

T := inf{n : Sn = +1},

then
P (T < ∞) = 1.

Thus a gambler whose strategy is to play till first ahead and then quit is certain to make
(and keep) an eventual profit.
3. With T as above,

ET = +∞.

That is, the gambler above has infinite expected playing time before he realises his eventual
terminal profit. In particular, the above strategy is unrealisable in practice, as it needs
unlimited playing capital, and playing time, to deliver a profit with certainty.
4. The distribution of T is

P (T = 2n− 1) = (−1)n−1

( 1
2

n

)
,

and its generating function is

P (s) := E(sT ) :=
∑∞

k=0
skP (T = k) = (1−

√
1− s2)/s

(Feller (1968), XI.3; thus P ′(1−) = +∞ yields ET = +∞ as above).
5. The distribution of the time spent positive (suitably defined) up to time 2n is given by

P (
∑2n

r=0
I(Sr > 0, or Sr = 0 & Sr−1 > 0) = k) =

(
2k

k

)(
2n− 2k

n− k

)
/22n (k = 0, 1, .., n)

(the Chung-Feller theorem: Chung & Feller (1949), Feller (1968), III.4). This distribution
is called the discrete arc-sine law (see below).
6. In consequence, the limiting distribution function of the fraction of time spent positive
is

(2/π) arcsin
√

x (0 ≤ x ≤ 1)

(the arc-sine law: Feller (1968), III.4). This has density

f(x) =
1

π
√

x(1− x)
(0 < x < 1).
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This density is U-shaped - unbounded near x = 0 and x = 1, with its minimum at the
central value x = 1/2. The interpretation is that a typical coin-tossing sequence is much
more likely to be unbalanced - with one player ahead most of the time - than balanced, a
result usually regarded as counter-intuitive when first encountered.
7. The number of paths (k, Sk) from (0, a) to (n, b) which touch or cross the x-axis is
the number of paths from (0,−a) to (n, b). This is the reflection principle, proved by
regarding the axis as a mirror and using symmetry (see Feller (1968), III.1, Grimmett &
Stirzaker (1992), §5.3). This is the probabilistic version of Kelvin’s method of images in
electrostatics. It gives as a corollary the ballot theorem (III.4 below; Feller (1968), III.1,
Grimmett & Stirzaker (1992), §5.11.7). For applications to barrier options in mathematical
finance, see e.g. Bingham & Kiesel (1998), §6.3.2.

This basic process - simple random walk on ZZ1 - is so simple to describe that it
may seem to lack depth. On the contrary: the extreme simplicity of structure means that
very detailed questions concerning it may be analysed in extreme depth. Such questions
include the following.
(i) Long runs of heads (or tails) and their analysis.
(ii) Range - number of points visited by time n.
(iii) Local time - time spent at the origin (or a point x) by time n, etc.
For an extensive recent treatment of simple random walk in depth, see Révész(1990), Part
I. A similarly detailed treatment of simple random walk in ZZd is given in Révész (1990),
Part II.

§3. Recurrence and transience.

The basic dichotomy in random walk concerns whether or not eventual return
to the starting-point is certain. If so, the walk is called recurrent; if not, transient. For
recurrent random walks, return to the origin infinitely often (i.o.) is also certain (because
limn→∞ 1n = lim 1 = 1); for transient random walks, this event has probability zero
(because for p ∈ [0, 1), limn→∞ pn = 0). Thus the total occupation time for the starting
point - and similarly, for all other points visited - for a recurrent random walk is infinite,
while for a transient random walk it is finite. As the total number of time-points n =
0, 1, 2, · · · is infinite, a transient random walk must necessarily have an infinite state-space.

If we write un for the probability of return to the starting-point at time n, fn

for the probability of first return to the starting-point at time n (f0 := 0), one has the
convolution relation

u0 = 1, un =
∑n

k=0
fkun−k (n ≥ 1).
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Forming the generating functions

U(s) :=
∑∞

n=0
unsn, F (s) :=

∑∞
n=0

fnsn,

this becomes
U(s) = 1 + U(s)F (s),

giving the Feller relation
U(s) = 1/(1− F (s)).

Write
f :=

∑∞
n=0

fn;

then f is the probability of eventual return to the starting-point. So f < 1 for transience,
f = 1 for recurrence. Thus one has recurrence if u := U(1) =

∑
un diverges, transience if∑

un converges.

§4. Simple random walk on ZZd; Pólya’s theorem.

Suppose now we are in d-space IRd, more particularly in the integer lattice ZZd.
We start at the origin, (0, 0, · · · , 0), and move to each of the 2d ‘neighbouring’ or ‘adjacent’
points - those with one coordinate ±1 and the rest zero - with equal probability 1/(2d);
successive steps are independent, each with this distribution. The result is called simple
random walk in d dimensions.

It was observed by Pólya (1921) that recurrence or transience depends on the
dimension d. For d = 1, we have

u2n+1 = 0, u2n ∼ 1/
√

πn,

so u =
∑

un diverges: simple random walk in one dimension is recurrent. For d = 2, for
return to the origin at time 2n one must have equal numbers - k, say - of positive and
negative steps in the first coordinate, and equal numbers - then n − k - in the second
coordinate. Thus

u2n =
1

42n

∑n

k=0

(2n)!
k!k!(n− k)!(n− k)!

=
1

42n

(
2n

n

)∑n

k=0

(
n

k

)2

=
1

42n

(
2n

n

)2

∼ 1/(πn) (n →∞),
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by Stirling’s formula. Thus u =
∑

un diverges, and simple random walk in two dimensions
is recurrent also.

For three dimensions, we have similarly

u2n =
1

62n

∑
j,k

(2n)!
j!k!(n− j − k)!j!k!(n− j − k)!

,

the summation being over all j, k with j + k ≤ n. Then

u2n =
1

22n

(
2n

n

)∑
j,k

( 1
3n

n!
j!k!(n− j − k)!

)2

.

The terms in the large brackets are those of a trinomial distribution, which sum to one.
So the sum is majorised by the maximal term, which is attained for both j and k near
(within ±1 of) n/3. Stirling’s formula now shows that the sum is O(1/n). As above, the
term outside the summation is O(1/

√
n), so u2n = O(1/n3/2). Thus u =

∑
un < ∞:

simple random walk in three dimensions is transient. The same argument applied in d

dimensions, using the d-variate multinomial distribution, gives the sum as O(1/n
1
2 (d−1)),

and so
∑

un converges as before. This proves:

Pólya’s Theorem. Simple random walk in d dimensions is recurrent for d = 1, 2, tran-

sient for d = 3, 4, · · ·.

Geometrically, the result may be interpreted as saying that there is ‘more room’ -
more ways to avoid returning to the origin - in higher dimensions.

The probability p of eventual return to the origin in three dimensions - p < 1 by
transience - has been calculated; its numerical value is

p = 0.340537329544 · · · .

For details and references, see Doyle & Snell (1984), §7.5, or Spitzer (1964), Ch. II Prob-
lems 10, 11.

§5. Random walks on IRd.

Consider first the case of random walk on ZZd. Starting at the origin, each d-
tuple k := (k1, · · · , kd) is reached in one step with probability µk, where the µk, being
probabilities, sum to one. Then if µ = (µk) is the probability distribution for each step,
that for n steps is the convolution power µn (or µ∗n, in the alternative notation), defined
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inductively by µn := µ ∗ µn−1 (µ0 := δ0, the Dirac mass at the origin). If the starting
position is x, the distribution after n steps is δx ∗ µn. The transition probabilities

pn(x, y) := P (Sn = y|S0 = x)

are translation-invariant:

pn(x, y) = pn(y − x) := pn(y − x, 0).

Thus the transition probabilities are homogeneous with respect to the additive group struc-
ture of ZZd (we return to group-theoretic aspects in Part II below). The classic monograph
of Spitzer (1964) deliberately restricts itself to this context, where the probabilistic struc-
ture is as unencumbered by any other as possible.

One may discard the discreteness of ZZd, and work instead with IRd. Here, since IRd

is uncountable, measure-theoretic restrictions arise, and probabilities need to be calculated
by integration rather than summation. For background, see e.g. Chung (1974), Ch. 8,
Ornstein (1969). Again, one works with a sequence of partial sums Sn :=

∑n
k=1Xk (S0 :=

0) of independent Xi with distribution µ, the distribution after n steps with starting-point
x is δx ∗ µn, and the additive group structure of IRd plays - via the addition in the partial
sums - a dominant role.

Often the essential feature is that the distribution evolves through time n = 1, 2, · · ·
via the powers Pn of a matrix P , the transition probability matrix on some countable set S.
Here we are in the context of Markov chains on state-space S. For a classical monograph
treatment see Chung (1967); for a more recent account see Norris (1997). If S has a graph
structure and the nearest-neighbour condition holds - that is, if a transition is possible
from x to y then there is an edge from x to y - one speaks of a random walk on the graph
G; see II.2 below. Of course, one can view any Markov chain in this way: one typically
draws in a graph structure when classifying the states of a Markov chain, for instance. It
is really a question of emphasis: when the properties - algebraic, geometric, topological -
of the set S are themselves of interest, it is customary and convenient to use the language
of random walks on S, and to take a dynamic viewpoint. If however the states s ∈ S are
not of particular interest in themselves, S serves merely as an index set to label the states,
and one speaks of a Markov chain on S.

In both the random-walk and Markov-chain context, questions arise as to the
nature - discrete or continuous - of both the time-set and the state-space. The traditional
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usage has been to speak of Markov chains when time is discrete and Markov processes
when time is continuous. However, one can argue that it is the nature of the state-space
S which is the more decisive, and speak of Markov chains and processes according as to
whether S is discrete or continuous; this is the point of view of the excellent text of Revuz
(1984).

§6. Harmonic analysis. For a random walk Sn = X1 + · · ·+ Xn, with the step-lengths
Xi independent with distribution µ, the basic operation is forming the nth convolution
powers, as above:

µ, µ2 := µ ∗ µ, µn := µ ∗ µn−1, · · · ;

we will write µn as µn∗ when the convolution in the power needs emphasis. The operation
of convolution involves an integration, and it is convenient to replace this by the simpler
operation of multiplication. One does this by passing to the characteristic function (c.f.)
or Fourier-Stieltjes transform of the Xj , or of µ:

φ(t) := E(exp{itXj}) =
∫

eitxµ(dx) (t ∈ IR).

By the Uniqueness Theorem for characteristic functions, no information is lost thereby;
by the Multiplication Theorem, the c.f. of an independent sum is the product of the c.fs.
Thus the c.f. of Sn is φn, the nth power of the c.f. φ of each step-length.

The basic transience/recurrence dichotomy for random walks may be expressed
in terms of the c.f. φ(t): the walk is transient if and only if <1/(1 − φ) is integrable in
some neighbourhood of the origin. This is the Chung-Fuchs criterion (Chung & Fuchs
(1951), as refined by Ornstein (1969)). This extends to locally compact abelian groups
(see Part II below): with µ̂ the Fourier transform of µ, the random walk with step-length
distribution µ is transient iff <1/(1− µ̂) is integrable in some neighbourhood of the group
identity (Kesten & Spitzer (1965)). Fourier analysis, like convolution, extends to the
general setting of random walk on groups (again, see Part II).

We note in passing the extension of Pólya’s theorem to general random walks on
IRd, due to Chung & Fuchs (1951).
(i) If d = 1 and the mean E|X| of the step-length exists, the random walk is recurrent if
EX = 0, transient otherwise.
(ii) If d = 2 and the variance, or E(|X|2), exists, the random walk is again recurrent if
EX = 0, transient otherwise.
(iii) If d ≥ 3, all properly d-dimensional random walks are transient.
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§7. Potential theory. Potential theory as part of the classical theory of electricity and
magnetism (and of gravitational attraction) grew out of the work of Green and Gauss
in the 19th century. The theory of Brownian motion, or of the Wiener process, is a 20th
century development; potential theory was linked to Brownian motion by Kakutani (1944).
Classical concepts from the electromagnetic theory of continuous bodies such as equilibrium
charge distribution, electrostatic capacity, potential and energy may be interpreted in
terms of Brownian motion - the equilibrium charge distribution on the boundary ∂D of a
conducting body D, for instance, is expressible in terms of the first hitting distribution of
Brownian motion on ∂D. A succinct account emphasising the historical aspects is given
by Chung (1995); for a textbook account, see e.g. Port & Stone (1978).

It was realised in the 1950s, through the work of Doob, Hunt and others, that
one can develop a ‘potential theory’ for Markov processes, Brownian motion being distin-
guished by having as its potential theory exactly the classical one. Since random walks
are particularly simple and important Markov processes, their potential theory has been
particularly fully developed accordingly. The theory is seen in its barest essentials in the
simplest possible context, random walk in ZZd; the potential theory of such random walks
is developed in detail in the classic book of Spitzer (1964).

The way in which the language of classical potential theory may be fruitfully
generalised is illustrated by the concept of a harmonic function. Classically, a function f

is harmonic if it satisfies Laplace’s equation ∆f = 0. This is a linear second-order elliptic
partial differential equation; it may be discretised on a lattice - in the plane, say - as

1
4
[f(x + 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)]− f(x, y) = 0.

With p(x, y) the transition kernel, one may write this more concisely as
∑

y
p(x, y)f(y) = f(x), or Pf = f.

In this form, P may be generalised to the transition function of an ordinary random
walk, not just simple random walk on ZZ2 as in the example above. One calls functions f

harmonic if they satisfy Pf = f .

The basic transience-recurrence dichotomy depends on the existence of a Green
function,

G(x, y) :=
∑∞

n=0
pn(x, y)

(or
∫∞
0

p(t, x, y)dt in continuous time). Random walks for which a Green function exists -
that is, for which this sum or integral converges - are transient; when the Green function
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does not exist (is identically +∞) the walk is recurrent. Transient potential theory involves
study of the Green function G(x, y) (as in Spitzer (1964), VI); recurrent potential theory
involves instead the Green kernels Gn(x, y) :=

∑n
r=0pr(x, y) (as in Spitzer (1964), III,

VII).

Discrete Laplacian. We saw above that Pf = f serves as a discrete analogue of Laplace’s
equation ∆f = 0. This motivates the definition of

∆ := P − I

as the discrete Laplacian. See e.g. Woess (1994), §4B, Biggs (1997), §§9, 10 and the
references cited there for background; we return to this in Part II below.

§8. Coupling. While the Fourier and potential-theoretic aspects of random-walk method-
ology are quite classical, the coupling method is more recent. Suppose that the probability
measures of two stochastic processes (in discrete time, say) are to be compared. The
coupling method is to construct both processes on the same probability space - with the
given measures as their distributions - and seek to compare the measures by comparing
the processes themselves directly - that is, pathwise. The method originates with Doeblin
(1938), in the context of Markov chains. It was developed by Ornstein (1969) for random
walks (and so appears in the second - 1976 - edition of Spitzer (1964), but not the first).
A monograph treatment of coupling generally is given by Lindvall (1992); see especially
II.3, III.2.12 there for random walks.

One of the most successful applications of coupling is to proving the convergence
theorem for (ergodic) Markov chains: one starts two independent copies of the chain, one
in an arbitrary (or the given) starting distribution, the other in the stationary distribution,
and runs them till they meet. One can then consider them as having ‘coalesced’ (because
of the Markov property), and the convergence theorem follows rapidly from this. Another
success of the coupling method is its use in proving renewal theorems (I.9 below; cf.
Lindvall (1992), II.1, III.1, V.5). Many of the results of Part II below on random walks
in more general contexts - such as finite groups, for example - are naturally proved by
coupling methods; see e.g. Aldous (1983), Diaconis (1988), 4E.

§9. Renewal theory. Consider first the classical setting involving replacement of compo-
nents - lightbulbs, say. At time 0, a new lightbulb is fitted, and used non-stop until it fails,
when it is replaced; this replacement bulb is used non-stop till failure and then replaced,
etc. With Xi the lifetimes of successive bulbs, Sn :=

∑n
i=1Xi,

Nt := max{n : Sn ≤ t},
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Nt is the number of failures up to and including time t. Then N := (Nt : t ≥ 0) is called
the renewal process. The lightbulb in use at time t is the (Nt +1)th (as SNt ≤ t < SNt+1);
the mean of this is the renewal function,

U(t) := E(Nt + 1) =
∑∞

n=0
(n + 1)P (Nt = n) =

∑∞
0

Fn∗(t),

with F the distribution function of the lightbulb lifetimes.

Here - as lifetimes are non-negative - the random walk (Sn) is concentrated on the
half-line [0,∞). More generally, one may consider random walks (Sn) on the line; with P

the probability measure of the step-length,

U :=
∑∞

n=0
Pn∗

is the renewal measure. Its study - in particular, of its asymptotic properties - is called
renewal theory on the line. Similarly in more general settings such as groups: renewal
theory is the study of the asymptotics of the Green kernel G :=

∑∞
n=0P

n∗.

The basic result is Blackwell’s renewal theorem (Blackwell (1953)): if F has mean
µ ∈ (0,∞] and is non-arithmetic (or non-lattice: the support of F is not an arithmetic
progression),

U(t + h)− U(t) →
{

h/µ (t → +∞),
0 (t → −∞).

(The arithmetic case is similar but simpler. This is the Erdös-Feller-Pollard theorem;
see Feller (1968), XIII.3.) Many proofs are known: see e.g. Feller (1971), XI.1 (renewal
equation and direct Riemann integrability), Lindvall (1977) (coupling), Bingham (1989)
(Wiener Tauberian theory).

The renewal theorem extends to IR2 (Chung (1952)): here the limit is 0 for all
approaches to ∞. The same is true for IRd (d ≥ 2): see e.g. Nagaev (1979).

Renewal theory on groups. Random walks on groups and other algebraic structures are
considered in Part II below; we pause here to discuss briefly renewal theory in such settings.
The renewal theorem extends to locally compact abelian groups G (Port & Stone (1969)).
Call G of type II if it is capable of supporting a random walk - with step-length law µ, say
- whose renewal measure ν :=

∑∞
n=0µ

n∗ does not tend to zero at infinity, type I otherwise.
Thus by the results above, IRd and ZZd are of type II for d = 1 (by the non-arithmetic and
arithmetic cases of Blackwell’s theorem), type I for d ≥ 2. The general result for locally
compact abelian groups G is that G is of type II iff G is isomorphic to IR⊕K or ZZ⊕K

with K compact.
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The renewal theorem extends also to non-abelian groups. Recall that a group is
unimodular if the left-invariant (Haar) measure is also right-invariant; it is amenable if it
possesses an invariant mean, on the space of bounded uniformly continuous functions. The
term amenable is understood in English to carry both its ordinary connotation and that of
‘meanable’ (French, moyennable, German, mittelbar); for background, see e.g. Greenleaf
(1969), Eymard (1972), Bondar and Milnes (1981). The non-amenable case is always type
I (Derriennic & Guivarc’h (1973)). In the unimodular case, type II groups are of the form
K × E with K compact and E isomorphic to IR or ZZ (Sunyach (1981)). The amenable,
non-unimodular case is studied in detail by Elie (1982a) (especially p.260 and §§1.6, 3.14,
3.22, 5.1).

§10. Limit theorems and Brownian motion. Much of the core of classical probability
theory is concerned with the limit theory of a sequence of partial sums Sn of random
variables Xn (independent and identically distributed, in the simplest case). For example,
the trilogy of classical limit theorems - the (strong) law of large numbers, the central limit
theorem and the law of the iterated logarithm - concerns just this. Since Sn is a random
walk, all of this is random-walk theory in some sense. For our purposes, however, we
prefer to regard this material - the classical limit theorems and the central limit problem
- as part of general probability theory, and refer to the excellent textbook treatments in
the classic texts of Feller (1971) and Chung (1968). We focus here more on the aspects
specific to random-walk theory - the recurrence/transience dichotomy, and the specifically
stochastic-process aspects.

Of course, in limit theory one is concerned with Sn as n → ∞. As the number
n of steps increases the influence of each individual step decreases, and in the limit it is
lost altogether. One thus expects the setting of a random walk to go over on passage to
the limit to the setting of a stochastic process in continuous time and state-space, and
this is indeed true. In the simplest case when the step-lengths have finite variance, the
limiting process obtained is Brownian motion or the Wiener process. The mathematics
necessary to handle the passage to the limit is the theory of weak convergence of proba-
bility measures, specifically the Erdös-Kac-Donsker invariance principle; for an excellent
account, see Billingsley (1968). The continuous framework of Brownian motion or some
other limiting process - a stable process, or a diffusion, for instance - lurks behind much
of the discrete framework of random walks.

Instead of obtaining a continuous-time or continuous-state process from a random
walk by a limiting procedure, one may instead begin in a continuous time and state-space
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framework. In this setting, the analogue of a random walk is a Lévy process - a stochastic
process with stationary independent increments. For a recent monograph account, see
Bertoin (1996). This book is particularly noteworthy for its treatment of the potential-
theoretic (Ch. II) and fluctuation-theoretic (Ch. VI) aspects; cf. I.7 above and Part III
below.

§11. Conditioned random walks. It frequently happens that one needs to deal with
a random walk - or other stochastic process - in which one wants to condition on some
event or other having happened (or - more often - not having happened) by time n. This
idea has been current at least since the work of Dwass & Karlin (1963). In limit theo-
rems, one expects to obtain as limit process a process obtained from a familiar one by
some conditioning operation. For example, the Brownian bridge is obtained from Brow-
nian motion by conditioning on return to the origin at time t = 1 (Billingsley (1968)),
the three-dimensional Bessel process is obtained by conditioning Brownian motion to stay
positive, and further processes such as Brownian excursion, Brownian meander and their
relatives are obtainable from Brownian motion by conditioning operations of various kinds.
Asmussen (1982) gives conditioned limit theorems for random walks, with various appli-
cations to queues and risk theory (we defer consideration of such applied topics to Part
III). For further results, background, and references, we refer to Bertoin & Doney (1994),
(1996).

It may be that the event on which one is conditioning has small probability, van-
ishing in the limit. For example, one may have a random walk which drifts to −∞,
conditioned to stay positive. In such situations, one is visibly focussing on highly atypical
behaviour, and the appropriate theory for handling such cases is that of large deviations,
for background on which we refer to, e.g., Deuschel & Stroock (1989), Dembo & Zeitouni
(1993). In the random-walk or risk-theoretic context, the basic technique is to pass to the
associated random walk, a technique originating with Cramér. See e.g. Feller (1971), XII.4
for theory, Asmussen (1982) for applications.

13



PART II. RANDOM WALKS IN MORE GENERAL CONTEXTS

§1. Random walks and electrical networks. We have seen (I.7) that electromag-
netism - in particular, electrostatics in continuous media - is relevant to random walks,
via potential theory. The theory of current electricity in networks of wires is also relevant,
an observation due to Nash-Williams (1959). This viewpoint has been given an excellent
textbook treatment by Doyle & Snell (1984); their book is largely motivated by an attempt
to ‘explain’ Pólya’s theorem.

Suppose we have a network of conducting wires, joining nodes x, y, . . .. Write Rx,y

for the resistance of the wire xy from node x to node y (Rx,y := +∞ if there is no such
edge). Note that Rx,y = Ry,x, which reflects the time-reversibility of the physics of steady
electrical currents. Write

Cx,y := 1/Rx,y

for the conductance of the wire,

Cx :=
∑

y
Cx,y,

Px,y := Cx,y/Cx.

Then one can define a stationary Markov transition matrix P = (Px,y), and this is re-
versible, since

CxPx,y = Cx,y = Cy,x = CyPy,x

(see Kelly (1979) for background on reversibility, and II.2 below). If

C :=
∑

x
Cx =

∑
x,y

Cx,y < +∞,

the chain is ergodic with stationary distribution

πx = Cx/C

(C < +∞ for finite networks; for a full treatment of infinite networks, we refer to Zemanian
(1992)). Conversely, reversible chains can arise in this way from networks: reversibility
characterises those ergodic chains that arise from electrical networks.

The link between random walks and electrical networks is developed in detail in
the book by Doyle & Snell (1984). Key results include the following.
(i) Thomson’s Principle (or Kelvin’s Principle): the flow of electricity through a network
minimises the energy dissipation.
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(ii) Rayleigh’s Monotonicity Law: increasing resistances can only increase effective resis-
tance (that is, decrease currents).
Used in combination, one can combine short-circuiting (removal of resistance between
nodes) and cutting (removal of connection between nodes) to introduce powerful compar-
ison methods between electrical networks, and hence - and this is the point of the method
- between the analogous random walks. For example, Doyle & Snell (1984), §5.9, exploit
Rayleigh’s method to give an electrical proof of Pólya’s Theorem (short-circuiting shows
recurrence in the plane, cutting shows transience in space). They also consider (Ch. 6)
random walks on trees, to which we return in II.5 below.

The energy ideas of the electrical analogy have been used by T. Lyons (1983) to
give a general recurrence/transience criterion for reversible Markov chains. His method
has interesting connections with Riemann surfaces and Riemannian manifolds, and with
Brownian motion on them; see II.4 below.

The electrical network method has recently been used by a number of authors
to simplify and extend various results on random walks on graphs (see II.2 below) and
networks. See for example Telcs (1989), Tetali (1991), Palacios (1993), (1994) and the
references cited there.

§2. Random walk on graphs. A graph G = (V, E) is a pair consisting of a set V of
vertices, and a set E of edges joining some pairs of vertices. For each v ∈ V , we may
consider the set Nx of neighbours of x - vertices y with an edge joining x to y. One may
define simple random walk on the graph G by specifying that starting at x, the particle
moves to each neighbour y ∈ Nx with equal probability 1/|Nx|, successive steps of the
walk being independent. More general probability assignments are possible: here the step
from x to y ∈ Nx has probability px,y (here y = x is allowed, representing either a loop
from x to itself or the possibility of staying put, and we can extend to all y by putting
px,y = 0 if y is not a neighbour of x).

Under mild conditions (such as irreducibility - all states being accessible from each
other - aperiodicity - absence of cycling - and recurrence - some, hence all, states recurrent
rather than transient), there exists a limiting, or stationary, distribution π = (πx)x∈V .
This has the property that if the system is started in π - so

P (S0 = x) = πx, (x ∈ V )

- it remains in π after one step:

πy =
∑

x∈V
πxpx,y (y ∈ V ),
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hence by induction for any number of steps.

One may interpret πxpx,y as the ‘probability flux’ from x to y. If the flux along
this edge is the same in the reverse direction,

πxpx,y = πypy,x (x, y ∈ V ),

then the walk is called reversible: its stochastic behaviour is the same if the direction of
time is reversed (this reversibility condition is also called the detailed balance condition). A
monograph treatment of reversibility is given by Kelly (1979), in the more general context
of Markov chains. As noted in II.1 above, reversible random walks on graphs are exactly
those for which an interpretation in terms of electrical networks is available.

Randomised algorithms. The general area of random walks on graphs and reversible
Markov chains has recently become highly topical. There is an extensive recent mono-
graph treatment by Aldous & Fill (1998+). Part of the motivation comes from theoretical
computer science, in particular the theory of randomised algorithms. In many situations,
algorithms to perform certain complicated tasks numerically involve conditional statements
(‘if ... then ..., otherwise ...’), so that it is not clear in advance how many steps, or it-
erations, the program will take. An analysis of the computational complexity may deal
with the worst case, but this is quite unrepresentative: it is usually better to focus on an
average case, in some sense. The ability to analyse, and simulate efficiently, random walks
on graphs representing the flow diagrams of - possibly very complicated - algorithms, and
in particular their stationary distributions, is thus a valuable aid to assessing the computa-
tional complexity of many problems. Also, in many deterministic problems - approximate
counting, volume estimation etc. - it is much more efficient to use a randomised algorithm
rather than a deterministic one. Now, analysis of the computational complexity involves
analysis of the convergence rates of the relevant random walks and Markov chains, for
which an extensive theory is available. For the algorithmics background, see e.g. Sin-
clair (1993), Motwani & Raghavan (1995); for surveys of random walks on finite graphs
motivated by this, see Lovász (1986), Lovász & Winkler (1995).

Algebraic aspects. For the purposes of probability theory on graphs, much useful informa-
tion is provided by the subject of algebraic graph theory, for which see Biggs (1974), and
the associated algebraic potential theory (Biggs (1997)). The algebraic potential theory
hinges on the discrete Laplacian (cf. I.7), and the associated Dirichlet problem. From this
point of view, the link between random walks and electrical networks is that both can be
expressed as Dirichlet problems on a graph.
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Boundary theory. For random walks on infinite graphs, much of the interest is on behaviour
at infinity and boundary theory. For a detailed account of this important subject, see
Woess (1991), (1994). Among the other methods relevant here, we mention isoperimetric
inequalities. It would take us too far afield to go into details; we refer for background to
Dodziuk (1984), Dodziuk & Kendall (1986), Gerl (1988), Woess (1994) §3A.

Spectral methods. The classical method for studying the rate of convergence of a random
walk on a finite Markov chain (or, here, a finite graph) is to use spectral theory. If the
transition matrix of the chain is P , the n-step transition matrix is Pn. If P is diagonalised
by finding its eigenvalues λi (arranged in decreasing order: 1 = λ1 ≥ λ2 ≥ . . . ≥ −1, where
λ1 = 1 by the Perron-Frobenius theorem) and eigenvectors, and we form the diagonal
matrix Λ of the λi, then Pn can be read off in terms of Λn, and the convergence behaviour
of Pn as n → ∞ is determined by λ2, the second largest eigenvalue. For recent accounts
of this spectral approach to the rate of convergence of a Markov chain, see Diaconis &
Stroock (1991) in the reversible case, Fill (1991) in the non-reversible case. Alternatives to
the spectral approach are available when the Markov chain, or graph, has special structure,
and we turn to such cases in the sections below.

Cover times. One problem of particular interest for random walks on graphs is that of
cover times - the time it takes for the walk to visit every state. For background, see e.g.
Aldous (1989), Broder & Karlin (1989), Kahn et al. (1989), Zuckerman (1989), Ball et al.
(1997).

§3. Random walks on groups. If x1, x2, · · · are independently chosen from a distribu-
tion µ on a group G, then the sequence of products

sn := xnxn−1 · · ·x2x1 (s0 := e)

is called the random walk on G generated by µ. If G is abelian, it is customary and
convenient to write the group operation additively:

sn := x1 + · · ·+ xn (s0 := 0).

Probability theory on groups - in particular, the theory of random walks - and
the closely related study of harmonic analysis on groups have been developed principally
for the case of locally compact groups G, to which we confine ourselves here. The (locally
compact) abelian - lca - case is treated in detail in Rudin (1962); the compact case - using
the Peter-Weyl theory of group representations - in Vilenkin (1968), Ch. 1. For the general
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locally compact case, see Heyer (1977). The link with random walk on graphs is given by
the Cayley graph of a group (see e.g. Biggs (1974), Ch. 16).

Ehrenfest model. For purposes of illustration, we mention here a classical instance of a
random walk on a group, of some historical and physical interest. Let G = ZZd

2, the additive
group of d-tuples of 0s and 1s modulo 2 (thus 1 + 1 = 0). This is motivated by the famous
Ehrenfest urn model of statistical mechanics, where d balls are distributed between two
urns, labelled 0, 1 (so the space ZZd

2 of d-tuples describes the occupancy states of the balls).
A move, or step, consists of choosing a ball at random and transferring it to the other urn.
This generates a random walk on G = ZZd

2 (and also a nearest-neighbour random walk on
the graph corresponding to ZZd

2, the unit cube Cd in d dimensions). As the structure of G is
so simple, the behaviour of the walk is straightforward to analyse (Kac (1959), III.11). Now
the original way to analyse this model involves counting the number of balls present in one
(or the other) urn - superficially simpler, as the number of states is thereby reduced from
2d to d+1. In fact, the analysis is now more complicated (Kac (1959), III.7-10). It involves
certain special functions - discrete orthogonal polynomials, the Krawtchouk polynomials -
which arise in the harmonic analysis of the relevant Gelfand pair (III.4 below).
Note. In the statistical mechanics context, d is of the order of magnitude of Avogadro’s
number (c. 6× 1023), so 2d - the number of states, and the recurrence time of the extreme
states (0, · · · , 0) and (1, · · · , 1)) - is so vast as to make the theoretical recurrence of states
with such astronomically large recurrence times unobservable in practice. The importance
of the Ehrenfest model is to reconcile the observed irreversibility of systems at macroscopic
level with the reversibility of the dynamics describing them at microscopic level. This
theme - the question of the ‘arrow of time’ - is of fundamental importance in physics. For
background and references, see e.g. Bingham (1991), Bingham (1998), §1.11.

Card-shuffling. If a pack of n cards (n = 52 in the case of ordinary playing cards) is
shuffled, the objective is to start from the initial distribution - which is highly patterned,
reflecting following suit in the play of the previous hand - and end with a patternless or
uniform distribution. There are n! permutations of the cards (note that 52! is enormous!
- c. 8.05× 1067). The usual method of shuffling - riffle shuffling - is analysed in detail by
Bayer & Diaconis (1992), Diaconis, McGrath & Pitman (1995). Suppose distance between
distributions is measured, as usual, by variation distance (or norm):

d(µ, ν) = ‖µ− ν‖ :=
1
2
supA{|µ(A)− ν(A)|}.

This exhibits the Aldous-Diaconis ‘cut-off phenomenon’: for µ a typical initial distribution,
µk the distribution after k shuffles, π the uniform distribution - the limit distribution of
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µk as k →∞ - d(µk, π) stays close to its maximum value 1 for k small, starts to decrease
sharply around the ‘cut-off’ value k ∼ 3

2 log2n, and approaches zero geometrically fast for
large k. For n = 52 as for actual playing cards, one may summarise this by saying that seven
shuffles suffice to get close to uniform. For background, see e.g. Aldous & Diaconis (1986),
Diaconis (1988), 3A.2, 4D. As well as a variety of probabilistic techniques, the mathematics
involved is that of group representations and non-commutative Fourier analysis on finite
groups.
Note. It is interesting to compare this line of work with a contrasting and more recent
one due to Lovász & Winkler (1995). Here, one uses a randomised algorithm to achieve
exact (rather than approximate) uniformity, but after a random number of steps. For the
standard pack of n = 52 playing cards, the expected number of steps to achieve uniformity
is c. 11.724.

Compact groups. Consider first the case of a compact group G - in particular, a finite
group G. Here no question of behaviour ‘at infinity’ arises. Instead, the basic result
here is the Itô-Kawata theorem: for a random walk with distribution µ on a compact
group G, the convolution powers µn converge to (normalised) Haar measure on the closed
subgroup Gµ generated by the support of µ (Heyer (1977), §2.1). We lose nothing for most
purposes by restricting from G to Gµ (or, we may restrict to µ whose support generates
G), when we obtain: on a compact (in particular, finite) group, random walk converges to
the uniform distribution. Of course, as we have seen above with the finite case of card-
shuffling, interest here focusses in great detail on how fast this convergence takes place
(Diaconis (1988); Urban (1997)).

Boundary theory. For infinite, discrete groups, one of the main questions is to study
how the random walk ‘escapes to infinity’. Thus the behaviour of the group itself ‘at
infinity’ - growth properties, etc. - is crucial. Furthermore, it is usually better to seek
an appropriate compactification of the state-space - by adjoining a suitable boundary -
so that the behaviour of the walk on this enlarged state-space is more informative, or
better behaved, or both. Boundary theory is too vast a subject for us to do more here
than point the reader to suitable references for a full account; see e.g. Furstenberg (1971),
Kaimanovich & Vershik (1983), Varopoulos et al. (1992), Woess (1994), Sawyer (1997),
Kaimanovich (1991). The general theme is that each of the structure of a group G, and the
behaviour of random walk on G, is highly informative about the other. Similar remarks
apply to the behaviour (especially at infinity) of random walks on graphs; see II.2 above
and II.4 below. Particular kinds of group have been studied in greater depth; for the

19



boundary theory of random walks on Fuchsian groups, for example (groups G of Möbius
transformations which act discontinuously on some G-invariant disc: see e.g. Beardon
(1983), §6.2), see Series (1983).

Kesten’s problem. The most basic question about random walk on groups is the recur-
rence/transience dichotomy: when is the random walk generated by µ on a group G

recurrent or transient? (as above, it may be appropriate to restrict to Gµ = G). If we
recall the Chung-Fuchs criterion of I.6, we see that the special nature of ZZ1 - that it can
support a recurrent random walk - is revealed by the symmetric probability laws µ (whose
mean is zero), and that of ZZ2 by the symmetric laws with finite variance - in particular,
with compact support. So if we restrict to probability laws µ which are symmetric (x
and x−1 have the same distribution) and of compact support, ZZd can support a recurrent
random walk if d = 1 or 2, but not otherwise. Groups G that can support a recurrent
random walk generated by a symmetric µ of compact support are called recurrent groups;
other groups are called transient groups. The question of which groups are recurrent and
which are transient has become known as Kesten’s problem, in honour of early work by
Kesten (1959), (1967), Kesten & Spitzer (1965). Note that we already have the following
examples of recurrent groups: finite groups; ZZ, ZZ2.

It turns out that these examples are, in a sense, the prototypes for finitely generated
recurrent groups: the only recurrent groups which are finitely generated are {e}, ZZ, ZZ2 and
finite extensions of them (Varopoulos: see Varopoulos et al. (1992), Ch. VI). The solution
depends on the volume growth of a discrete, finitely generated group (defined in terms of
the word metric - the graph metric of the Cayley graph: ibid., VI.2, Woess (1994), §2C).
Then finitely generated groups are recurrent iff their volume function V (k) can have growth
of at most O(k2) (ibid., VI.6). The theory is extended to (locally compact) unimodular,
compactly generated groups (prototype: IRd) in Varopoulos et al. (1992), Ch. VII, and
to unimodular Lie groups in Varopoulos et al. (1992), Ch. VIII (Kesten’s problem for
connected Lie groups is solved in Baldi (1981); for background on random walks on Lie
groups, see Guivarc’h, Keane & Roynette (1977)).

§4. Brownian motion on Riemannian manifolds. The motivating problem for the
Varopoulos theory on Kesten’s problem for groups was the analogous question for certain
Riemannian manifolds, in particular for covering manifolds M1 of a compact manifold
M (for background on covering manifolds, see e.g. Chavel (1993), Ch. 4). The deck
transformation group Γ of the normal covering P1 : M1 → M is finitely generated and
compact, since this holds for the fundamental group π1(M) of M . Varopoulos’ theorem
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states that Brownian motion on M1 is recurrent if and only if the deck transformation
group Γ is recurrent (Varopoulos et al. (1992), X.3), and we know from the above that
this holds if and only if Γ is a finite extension of {e}, ZZ or ZZ2. For background to potential
theory on manifolds and graphs (such as the Cayley graph of a finitely generated group, as
here), see e.g. Ancona (1990), III, Lyons & Sullivan (1984) and the references cited there,
and Biggs (1997). This method of studying manifolds via graphs is called discretization,
since the graph serves as a discrete analogue of, or approximation to, the manifold.

Heat kernels. The heat kernel p(t, x, y) - the fundamental solution of the heat equation

(∆ + ∂/∂t)u = 0,

with ∆ the Laplacian of the manifold - plays a decisive role in the analysis and potential
theory of a manifold, as well as the behaviour of Brownian motion there; for background see
Davies (1989) and the references cited there. The discretization procedure above replaces
this by its analogue on the graph, also called a heat kernel. This may be studied in
continuous time (as on the manifold), or discrete time, when one obtains pn(x, y), the
n-step transition probabilities of the random walk on the graph. Recent results on heat
kernels on graphs are due to Pang (1993), Davies (1993); we shall return to this question
later for graphs with special structure.

§5. Random walks on homogeneous spaces, Gelfand pairs, hypergroups and

semigroups.

1. Homogeneous spaces. Random walks often occur in settings which are not themselves
groups, but in which a group structure is nevertheless present. If G is a group and K a
compact subgroup, G acts on the coset space M := G/K, which is a homogeneous space;
random walk in such contexts have been surveyed by Elie (1982b), Schott (1984). With G,
K suitable Lie groups, M may be given a Riemannian manifold structure; certain M arising
in this way (those for which the curvature tensor is invariant under parallel translations)
are symmetric spaces in the sense of Elie Cartan. For a monograph treatment of these,
including Cartan’s classification, see Helgason (1962). A particularly important case is
that of the spheres Σk (a k-dimensional manifold of constant positive curvature in (k +1)-
dimensional Euclidean space): these are compact symmetric spaces of rank one, given
by

Σk = SO(k + 1)/SO(k)

(Helgason (1962), X.3, Example III). For random walks on Σk, see Bingham (1972).
2. Gelfand pairs. Closely related to this is the concept of a Gelfand pair: pairs (G,K)
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as above in which the convolution algebra of functions in L1(G) bi-invariant under K is
commutative. For random walks in this context, see the survey of Heyer (1983). Proto-
typical examples of Gelfand pairs include (G,K) = (SO(k + 1), SO(k)) above, relevant to
random walk on spheres, in the infinite (or continuous) case, (G,K) = (ZZd

2×Sd, Sd) (with
Sd the symmetric group on d objects), giving the unit d-cube relevant to the Ehrenfest
urn model in the finite case (Diaconis (1988), 3F, Remark 3). Gelfand pairs provide the
machinery needed to lift a random walk on a Markov chain to a random walk on a group.
For background, see Letac (1981), (1982), Diaconis (1988), 3F, 3G and the many references
cited there.
3. Hypergroups. If δx denotes the Dirac measure at x for x in a group G, the convolution is
given by δx ∗ δy = δx.y. The convolution δx ∗ δy can usefully be defined on some structures
other than groups, called hypergroups, and here also one can study random walks. For full
detail on this important subject, we refer to the survey of Heyer (1984) and the monograph
of Bloom & Heyer (1994).
4. Semigroups. Here one has no inverse operation as in a group, only the product op-
eration; typical examples are the reals under multiplication, and matrices under matrix
multiplication. The resulting structures are of course less rich than their group-theoretic
counterparts, but nevertheless a theory of random walks on semigroups - including, in
particular, questions of recurrence and transience - has been developed in some detail. For
background, see e.g. Högnäs (1974), Mukherjea and Tserpes (1976).

§6. Random walk on graphs with special structure.

1. Graphs with symmetry properties. The d-cube ZZd
2 considered earlier in connection with

the Ehrenfest model is a good example of a graph with a high degree of symmetry. Other
examples include:
(i) the Platonic solids (classical regular polyhedra: tetrahedron, cube, octahedron, dodec-
ahedron, icosahedron),
(ii) the Archimedean solids (semi-regular polyhedra) - prisms, antiprisms, and thirteen
others, including the truncated icosahedron/soccer ball, which has recently achieved fame
as the model for the C60 or buckminsterfullerene molecule (a new form of carbon),
(iii) higher dimensional polytopes (see e.g. Coxeter (1973), VII).
Properties of random walks on regular graphs, polyhedra and polytopes have been stud-
ied in depth in a series of works by Letac & Takács (1980a), (1980b), Takács (1981),
(1984), (1986). For background on the implications of symmetry and regularity properties
of graphs, see Biggs (1974), Part Three. Random walks on highly symmetrical graphs
have been studied by Devroye & Sbihi (1990), and on edge-transitive graphs by Palacios
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& Renum (1998). See also Belsley (1998) for rates of convergence.

2. Pre-fractals. Many of the classical examples of fractal sets are nested fractals, obtained
by some recursive construction and exhibiting some self-similarity property. The fractal
is obtained by a limiting procedure; the graph obtained by terminating the recursive con-
struction after finitely many steps is a pre-fractal. An important example is the Sierpinski
gasket, a fractal obtained by starting from an equilateral triangle and recursively removing
the opposite-pointing triangle forming its ‘middle quarter’. The corresponding pre-fractal,
the Sierpinski pre-gasket or Sierpinski graph, is illustrated in Falconer (1985), Fig. 8.4 §8.4.
Random walk on the Sierpinski graph is considered in detail by Grabner (1997), Grabner
& Woess (1997). There are interesting near-constancy phenomena, and connections with
branching processes; for background, see e.g. Biggins & Bingham (1991), (1993). Jones
(1996) obtains bounds for heat kernels on the Sierpinski graph, which - because of the
special structure - are better than those available for more general graphs (Pang (1993),
Davies (1993)). See also Hattori et al. (1990), Hattori & Hattori (1991).

3. Trees. Trees - graphs without circuits - are simpler to handle than general graphs.
Doyle & Snell (1984), Ch. 6 use random walk on trees and Rayleigh’s comparison method
to give a new proof - intended as an ‘explanation’ - of Pólya’s theorem.

The most interesting case is that of an infinite tree. If we have a transient random
walk on an infinite tree, attention focusses on how the walk ‘escapes to infinity’, hence
on compactifications of the state-space. For background and references, see the survey of
Woess (1991) and the papers on trees cited there.

The key parameter for random walk on an infinite but locally finite tree is the mean
number of branches per vertex. This can be identified with the exponent of the Hausdorff
dimension of the boundary (R. Lyons (1990)). One can introduce a one-parameter family
of random walks on such trees, where the tendency to transience (escape to infinity) may
be balanced by a greater probability of choosing the branch back towards the root. By
varying the parameter, a phase transition is obtained. For a full account, see R. Lyons
(1990), (1992), Lyons & Pemantle (1992), the monograph Lyons & Peres (1998+), and
Takacs (1998).

4. Crystallographic lattices. The lattice ZZ2 gives a - recurrent - tiling of the plane by
squares; one can also tile the plane by equilateral triangles or by hexagons. That random
walk on the triangular and hexagonal lattices is also recurrent was shown by Rogers (1985).
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Suppose one takes the square lattice ZZ2, and replaces each lattice point by a small
square whose diagonals form part of the grid-lines of the lattice. The resulting tiling of
the plane by small squares and larger octagons is familiar from patterns on wallpaper and
linoleum (usually rotated through π/4 for aesthetic reasons). This lattice too is recurrent;
Rogers (1985) shows this, and gives a general method in terms of additive functionals of
Markov chains. Results of this type are also given by Soardi (1990).

One may apply the method to other familiar lattices, such as the crystallographic
lattices in 2 and 3 dimensions. These may be classified: in 2 dimensions, there are 17
such ‘wallpaper groups’, most of them represented on the famous wall decorations of the
Alhambra in Toledo (Schwarzenberger (1974)). In three dimensions, there are over two
hundred (there are two ways to count them, depending on whether or not laevo and dextro
forms are distinguished). For background on these and crystallographic classification in
higher dimensions, see Schwarzenberger (1980).

§7. Variants on random walk. A number of variants and generalizations of random walk
have been studied, for mathematical interest or to model aspects of natural phenomena.

1. Random walk in random environments. Considering random walk on ZZ (for simplicity),
suppose that each integer n is chosen independently to be one of two types; with these
choices made, ZZ is now a ‘random environment’. Now suppose that a particle performs a
random walk on ZZ, but with different transition probabilities from sites of the two types.
This is a random walk in a random environment (RWRE). The motivation comes partly
from the physics of random (or disordered) media. For details and references, we refer to
Révész (1990), Part III, Lyons & Pemantle (1992), Pemantle & Peres (1995).

2. Reinforced random walk. Suppose that a particle performs a (nearest-neighbour) ran-
dom walk, not choosing all neighbours with the same probability but showing a preference
for sites already visited. This model - called reinforced random walk - is motivated by
the habits, and learning behaviour, of humans and animals: one deepens one’s knowledge
of the known environment by re-visiting it, occasionally extending it by forays into the
unknown. For background, see e.g. Pemantle (1988), Davis (1989).

3. Self-avoiding random walk. Suppose that a random walk evolves, but that the walk is
not allowed to revisit states previously visited. The resulting process, called a self-avoiding
random walk, models the behaviour of polymers and the like. The model is difficult to
analyse, as the excluded volume restriction makes the current evolution of the path strongly
dependent on the entire history of the path to date. For detailed accounts, see e.g. Barber
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& Ninham (1970), Madras & Slade (1993), Hughes (1995), Ch. 7. Self-avoiding walk on
the Sierpinski graph and gasket has been considered by Hattori et al. (1990), Hattori &
Hattori (1991), motivated by physical applications.

4. Branching random walk. Branching processes model the reproductive behaviour of
biological organisms; random walks may be used to model the spatial diffusion of such
organisms. The two may be combined: in the branching random walk, particles perform
random walk for some lifetime distribution (exponential, say); on death, they are replaced
by the next generation, as in the usual branching-process model, each of whom performs
a new random walk independently, starting from its birthplace. The resulting model, an
idealization of a biological population evolving in time and space, has been analysed in
considerable detail; see e.g. Biggins (1995) and the references cited there. We shall deal
in Part III with the Lindley equation in connection with queueing; for related results for
branching random walks, see Biggins (1998).

5. Tree models in mathematical finance. In probability theory one generally writes random
walks additively, when the relevant group is abelian. In mathematical finance, however,
one naturally thinks in terms of financial returns - gains per unit of capital invested - and it
is now more natural to work with multiplicative random walks. The analogue of a random
walk on ZZ taking steps ±1 with probabilities p, q is now a binomial tree. The model is
due to Cox, Ross & Rubinstein (1979), who used it to derive the discrete Black-Scholes
formula (of which the Black-Scholes formula itself is a limiting case). For details, see e.g.
Bingham & Kiesel (1998), §4.5.
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PART III. FLUCTUATION THEORY

§1. Spitzer’s identity. If we think of a random walk (Sn) as modelling the capital of a
player in a gambling game, for instance, the monetary interpretation means that the large
(or small) values of Sn are of particular interest. For many purposes - theoretical and
practical - it is useful to focus attention on these explicitly, by considering the sequence

Mn := max{0, S1, · · · , Sn}

of maximal partial sums to date (or, dually, of

mn := min{0, S1, · · · , Sn}).

The study of (Mn) and related quantities is referred to as the fluctuation theory of the
random walk (the terminology is that of Feller (1949), (1968), III).

Passing from (0, S1, · · · , Sn) - equivalently, from (X1, · · · , Xn) - to (M1, · · · ,Mn)
effects a useful data reduction, as the sequence of maxima will typically contain fewer
(perhaps many fewer) distinct elements. On the other hand, the random walk (Sn) is
Markovian, while the maximum sequence (Mn) is non-Markovian, which makes it much
harder to analyse. The key result is the following, which links the distributions of Mn with
those of S+

n := max(0, Sn). For 0 < r < 1, <λ ≤ 0, one has

∑∞
n=0

rnE exp{λMn} = exp{
∑∞

n=1

rn

n
E exp{λS+

n }}

(Spitzer (1956): the result is called Spitzer’s identity).

Write
f(λ) := E exp{λX1}

for the characteristic function of the step-length distribution of the random walk (of course,
this is usually defined as E exp{itX1} for t real, but if we intend to continue t to a complex
variable, as we do, the i serves no purpose). Thus f is defined for <λ = 0, a line in the
complex λ-plane, and may be continued into a strip (which may degenerate to the line
<λ = 0 above), or a half-plane, or the whole plane. For 0 < r < 1, write

ω+
r (λ) := exp{

∑∞
n=1

rn

n
E{exp λSn}I(Sn > 0)},

ω−r (λ) := exp{
∑∞

n=1

rn

n
E{expλSn}I(Sn ≤ 0)}.
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Then ω+
r (λ) is defined at least for <λ ≤ 0, ω−r (λ) at least for <λ ≥ 0, and are analytic in

the respective open half-planes . On the intersection <λ = 0 of the two closed half-planes,
where both are defined, one has

ω+
r (λ)ω−r (λ) = exp{

∑∞
n=1

rn

n
E exp{λSn}}

= exp{
∑∞

n=1

rn(f(λ))n

n
}

= 1/(1− rf(λ)).

This idea of taking a function defined only on a line (or strip) in the complex plane, and
expressing it as a product of two functions each defined in complementary half-planes
intersecting in this line and analytic in their interiors is often useful, as it allows the
powerful machinery of complex analysis to be brought to bear. It may be traced to the
work of Wiener & Hopf (1931) (cf. Paley & Wiener (1934), IV), and is accordingly known as
the Wiener-Hopf method; for a survey of Wiener-Hopf methods in probability, see Bingham
(1980). The factors ω+

r , ω−r are called the right and left Wiener-Hopf factors of the random
walk.

We may re-write Spitzer’s identity as

∑∞
n=0

rnE exp{λMn} = ω+
r (λ)ω−r (0) = exp{

∑∞
n=1

rn

n
E exp{λS+

n }},

and there is a bivariate extension

∑∞
n=0

rnE exp{λMn + µ(Sn −Mn)} = ω+
r (λ)ω−r (µ) (0 < r < 1,<λ ≤ 0,<µ ≥ 0),

also called Spitzer’s identity or the (first) factorization identity. Both are due to Spitzer
(1956); for an excellent textbook treatment, see Chung (1974), Ch. 8.
Order statistics. Spitzer’s identity deals with the maximum - largest order statistic - of
the partial sums. It extends to other order statistics: see Wendel (1960), de Smit (1973a).
Generalisations. Factorisation identitities of this type can be proved in much more general
contexts - such as Markov chains, Markov additive processes, etc. - and there is now
a considerable theory. For background and details, see e.g. Arjas and Speed (1973),
Asmussen (1989), Kennedy (1998).

§2. Ladder epochs and heights. Particular interest attaches to those partial sums
which are maximal - those members of the sequence (Sn) which belong to the sequence
(Mn) also. The zeroth partial sum is S0 := 0; the first positive partial sum, Z say, is called
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the first strict ascending ladder height; the first time T that this level is attained is called
the first strict ascending ladder epoch. Thus T , Z are the time and place of first passage of
the random walk to (0,∞). Considering the first non-negative partial sum Sn with n ≥ 1
gives the weak ascending ladder height and epoch (first passage to [0,∞)), and similarly
for strong and weak descending ladder heights and epochs. Subsequent ladder epochs and
heights may be defined by starting the process afresh at the first ladder epoch. The ladder
steps are the gaps between successive ladder heights.

Of course, ladder variables may be defective: if the walk never enters (0,∞), one
defines T , Z to be +∞, and similarly for the other types of ladder variable. To proceed,
one needs to classify by defectiveness or otherwise of the ladder variables. Discarding the
trivial degeneracy of the step-length distribution F being concentrated at zero, one has
exactly one of the following three alternatives (Feller (1971), XII, XVIII):
(i) drift to +∞: Sn → +∞ a.s. (so m := min{Sn : n ≥ 0} > −∞ a.s.),
(ii) drift to −∞: Sn → −∞ a.s. (so M := max{Sn : n ≥ 0} < +∞ a.s.),
(iii) oscillation: lim supSn = +∞, lim inf Sn = −∞ a.s. (so m = −∞, M = +∞ a.s.).
This drift/oscillation trichotomy is decided by

A :=
∑∞

n=1

1
n

P (Sn > 0), B :=
∑∞

n=1

1
n

P (Sn < 0) :

one has
(i) drift to +∞ iff A = ∞, B < ∞,
(ii) drift to −∞ iff A < ∞, B = ∞,
(iii) oscillation iff A = B = ∞
(in fact

∑∞
n=1

1
nP (Sn = 0) < ∞ always, so one could use P (Sn ≤ 0), P (Sn ≥ 0) instead

here). [Of course, if the mean step-length µ exists, the strong law of large numbers shows
that we have drift to +∞ if µ > 0, drift to −∞ if µ < 0 and oscillation if µ = 0, but
matters are not so simple if µ is not defined.]

Write

Ln := min{k : k = 0, 1, · · · , n : Sk = Mn}

for the first time up to time n that the maximum it attained,

L′n := max{k : k = 0, 1, · · · , n : Sk = mn}

for the last time that the minimum is attained. Then Ln is the last occurrence of a strict
ascending ladder-point, and dually L′n is the last occurrence of a weak descending one.
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Write T ′, Z ′ for the first weak descending ladder epoch and height. To solve the first-
passage problem into the positive half-line (0,∞), one requires the joint law of (T,Z). It
turns out that this is expressible in terms of the Wiener-Hopf factor ω+, and that of (T ′, Z ′)
in terms of ω−. One has the Spitzer-Baxter identity (or second factorization identity):

ω+
r (λ) = 1/(1− E(rT exp{λZ})) =

∑∞
n=0

rn

∫

{Ln=n}
exp{λSn}dP

(0 < r < 1, <λ ≤ 0)

and its dual form

ω−r (λ) = 1/(1− E(rT ′ exp{µZ ′})) =
∑∞

n=0
rn

∫

{Ln=0}
exp{µSn}dP

(0 < r < 1, <µ ≥ 0)

(Spitzer (1960), Baxter (1958); cf. Port (1963), Chung (1974), Ch. 8).

The number of positive partial sums

Nn :=
∑n

k=1
I(Sk > 0)

(occupation-time of the half-line (0,∞)) is often important. For each n, the distributions of
Nn and Ln coincide. Indeed, the laws of (Nn, Sn), (Ln, Sn) and (n−L′n, Sn) coincide - and
similarly with Sn replaced by any function of (X1, · · · , Xn) invariant under permutations
of the Xi. This important result is called (E. Sparre) Andersen’s Equivalence Principle
(Andersen (1953/54); Chung (1974), Ch. 8).

Extremal factorization. The equivalence principle has many useful consequences. For
example,

P (Ln = k) = P (Lk = k)P (Ln−k = 0)

follows easily from the Markov property of the random walk. This translates into

P (Nn = k) = P (Nk = k)P (Nn−k = 0),

an important but non-obvious property called extremal factorization (Port (1963), Heyde
(1969)).
Note. The (ascending) ladder heights and epochs are also the (upper) records and record
times of the partial-sum process. The term ‘record’ in the statistical literature usually
denotes a record of the readings Xn rather than their partial sums. We shall use such
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records in III.9 below; for background, see e.g. Foster & Stuart (1954), Bingham et al.
(1987), §8.14.

§3. Spitzer’s arc-sine law. Recall (I.1) the Chung-Feller theorem, giving the exact
distribution of the time spent positive in simple random walk on ZZ (the discrete arc-sine
law), and its limit distribution, the (continuous) arc-sine law. It turns out that the results
above allow a definitive generalization of this result.

First, we note that the discrete arc-sine law for the occupation-time of a random
walk holds, not only for the case of simple random walk on ZZ (where, recall, we had to take
care over what we meant by the walk being ‘positive’), but also whenever the step-length
distribution F is symmetric and continuous. For this, see Feller (1971), XII.8. Note that
this result has the remarkable property of being distribution-free: it does not depend on
F , provided only that F is continuous and symmetric (see III.8 below).

For 0 < ρ < 1, consider the probability distribution Gρ on [0, 1] with density

gρ(x) :=
sin πρ

π
xρ−1(1− x)−ρ

(to see that this is a probability density, use Γ(z)Γ(1 − z) = π/ sin πz and Euler’s beta-
integral). For ρ = 0, the density is singular at x = 0; consideration of Laplace transforms
shows that

Gρ → δ0 (ρ ↓ 0)

(weak convergence to the Dirac law at zero); similarly

Gρ → δ1 (ρ ↑ 1).

Defining G0 := δ0 and G1 := δ1, one thus has a family of laws {Gρ : 0 ≤ ρ ≤ 1} on
[0, 1] - the generalized arc-sine laws with parameter ρ (some authors use the alternative
parametrization 1− ρ), or with mean ρ: if X has law Gρ,

EX = ρ

and its kth moment is given by

E(Xk) =
(

k + ρ− 1
k

)
= (−)k

(−ρ

k

)
(k = 0, 1, · · ·).

For proof and background, see Dynkin (1961), Lamperti (1962), or e.g. Bingham et al.
(1987), §8.6.2.
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We may now formulate Spitzer’s arc-sine law (Spitzer (1956)): the fraction of time
Nn/n that the random walk spends positive up to time n has a limit distribution as n →∞
iff

1
n

∑n

k=1
P (Sk > 0) → ρ ∈ [0, 1] (n →∞);

then the limit law is the generalized arc-sine law Gρ, and these are the only possible limit
laws. The condition above is called Spitzer’s condition; it was proved recently by Doney
(1995) that this is equivalent to the apparently stronger condition

P (Sn > 0) → ρ (n →∞).

Thus the following conditions are equivalent.
(i) Convergence of probabilities: P (Sn > 0) → ρ.
(ii) Convergence of means: 1

n

∑n
k=1P (Sk > 0) → ρ =

∫ 1

0
xdGρ(x).

(iii) Convergence of moments: E[(Nn/n)k] → (−)k
(−ρ

k

)
=

∫ 1

0
xkdGρ(x) (k = 0, 1, · · ·).

(iv) Convergence in distribution: Nn/n → Gρ in distribution.
Furthermore, these are the only possible limit distributions. One can extend the list
above to include an even stronger statement - weak convergence of the Markov processes
measuring the time-lapse since the last ladder epoch (Bingham (1973)).

Spitzer’s condition holds when the random walk belongs to the domain of attrac-
tion (without centring) of some stable law, H say: if

Sn/an → H (n →∞),

then

P (Sn > 0) = P (Sn/an > 0) → 1−H(0) = P (Y > 0),

where Y is a random variable with the stable law H. If Y (or H) has index α ∈ (0, 2] and
skewness parameter β ∈ [−1, 1], one has

ρ =
1
2
− 1

πα
arctan(β tan

1
2
πα)

(Zolotarev (1957); cf. Bingham et al. (1987), §8.9.2). There are partial results in the
converse direction: Spitzer’s condition implies a domain-of-attraction condition ‘far from
symmetry’, but not ‘close to symmetry’. For details and references, see Bingham et al.
(1987), §8.9.2.
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Spitzer’s condition is equivalent to regular variation of the tail of the ladder epoch
T (that is, for T to be in the domain of attraction of a one-sided stable law). The condition
for regular variation of the tail of the ladder height Z is Sinai’s condition:

∑∞
n=1

1
n

P (λ < Sn ≤ λx) → β log λ (x →∞) ∀λ > 1

(Sinai (1957); Bingham et al. (1987), §8.9.4).

§4. Ballot theorems. Suppose that two candidates, A and B, compete in a ballot, their
finals scores being a and b votes respectively (a > b). The probability that the winning
candidate A is ahead throughout the count is a/(a + b). This classic result, the ballot
theorem, stems from the work of Desiré André in 1887 (the reflection principle of I.2)
and Whitworth’s classic book Choice and chance (Whitworth (1886)). For a monograph
treatment of the many extensions and applications of the ballot theorem, see Takács (1967).
[Of course, there are implicit exchangeability conditions here: in an actual election - say,
for parliament - the lead may fluctuate during the count because of the psephological
characteristics of the particular constituency.]

A form of the ballot theorem arises in the context of skip-free random walks. Call
a walk on the integer lattice ZZ left-continuous, or skip-free to the left, if the step-length
law F is supported on {−1, 0, 1, 2, · · ·} - thus the walk can jump to the right, but moves
to the left continuously (which on the lattice means one step at a time). Right-continuous
random walks are defined analogously. If T is the first- passage time from 0 to −k in a
left-continuous walk (k = 1, 2, · · ·), one has Kemperman’s identity

P (Tk = n) = (k/n)P (Sn = −k) (1 ≤ k ≤ n)

(Kemperman (1961); for a simple proof, see Wendel (1975)).

Kemperman’s identity allows one to prove quite simply that for skip-free random
walks, Spitzer’s condition is equivalent to a domain-or-attraction condition. Of course, this
result is to be expected: we noted above that this equivalence holds ‘far from symmetry’,
and skip-free random walks are ‘completely asymmetrical’.

§5. Queues. The fluctuation theory of random walks developed above is immediately
applicable to queues. We consider first the GI/G/1 queue (Kendall’s notation: GI for
general input, G for general service-time, 1 for the single server, Kendall (1951)); we
follow Feller (1971), VI.9, Grimmett & Stirzaker (1992), Ch. 11, or Asmussen (1987),
III.7, VII, IX.
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Suppose customers (labelled 0, 1, 2, · · ·) arrive for service at a single-server (free at
time 0) at times 0, A1, A1 + A2, · · · (so the An are the inter-arrival times). Let Bn+1 be
the service-time of the nth customer. We assume the An are i.i.d. with law A(.), the Bn

i.i.d. with law B(.), and the An and Bn are mutually independent. Write

Xn := Bn −An (n = 1, 2, · · ·),

and consider the random-walk Sn :=
∑n

k=1Sk generated by the Xn. Let Wn be the waiting-
time of the nth customer, for the queue to clear and his service to begin (so W0 = 0, and
Wn = 0 iff the nth customer is lucky - arrives to find the server free). Then considering
the situations facing the nth and (n + 1)th customers on arrival, we see that

Wn+1 = (Wn + Bn+1 −An+1)+ = (Wn + Xn+1)+,

the Lindley relation (Lindley (1952).

Write a, b for the means of A, B, both assumed finite, and write ρ := b/a for the
traffic intensity. If ρ < 1, the mean service demand of a new customer is less than the
mean time to the next arrival: it is then plausible, and true, that the queue is stable -
settles down to an equilibrium state as time t → ∞ (or as n → ∞), irrespective of the
initial conditions. If W has the limiting waiting-time distribution, the Lindley relation
above suggests the equality in distribution

W = (W + X)+,

where X has the law of the Xn. Writing W (.), F (.) for the distribution functions of W ,
X, this says

W (x) =
∫ ∞

0

F (x− y)dW (y) (x ≥ 0),

an integral equation of Wiener-Hopf type. Its solution was analysed in detail by Spitzer
(1957), who showed that there is a unique solution W (.) which is a proper probability
distribution (W (∞) = 1) iff the traffic intensity ρ < 1 - that is, when the queue is stable.
When ρ ≥ 1, there is no such solution, waiting times tend to +∞ in probability (ρ > 1),
or are unbounded in probability (ρ = 1), and the queue is unstable.

The link between random walks and waiting-times is even stronger: one has equal-
ity of distribution between Wn, the waiting-time of the nth customer, and

Mn := max{0, S1, · · · , Sn}
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(this holds for each n separately, not jointly: observe that the sequence (Mn) is increasing,
while (Wn) is not). To prove this (as in Feller (1971), VI.9), we note the following.
(i) The (strong) descending ladder indices of the random walk (Sn) correspond to the lucky
customers who arrive to find the server free.
(ii) If [n] denotes the index of the last ladder epoch up to time n,

Wn = Sn − S[n].

(iii) If X1, · · · , Xn are written in reverse order as X ′
1, · · · , X ′

n, with partial sums S′k =
Sn − Sn−k, and M ′

n = max{0, S′1, · · · , S′n}, then

Sn − S[n] = M ′
n.

The result then follows as by symmetry Mn and M ′
n have the same distribution.

As n → ∞, Mn ↑ M < ∞ iff the random walk (Sn) drifts to −∞, that is,
EXn = b− a < 0, i.e. b < a, ρ := b/a < 1. We can read off the limiting distribution M of
the Mn from Spitzer’s identity, which contains the distributions of the Mn, to get

E exp{itM} = exp{
∑∞

n=1

1
n

(E exp{itS+
n } − 1)} (ρ < 1).

When means exist, the sign of b− a discriminates between drift to −∞, drift to +∞ and
oscillation; this tells us again the the limiting waiting-time law W exists if ρ < 1 but not
otherwise.

For a stable queue, we can consider the number N of customers served in the first
busy period (initiated by the arrival of the 0th customer at time 0) - or, by the same token,
any busy period. Note that the busy period is a.s. finite - and so N < ∞ a.s. - iff the
queue is stable. We can also consider the length T of the first (or any) busy period, and
the length I of the first (or any) idle period. It turns out that the ladder variables of III.2
provide the key to this analysis, in view of the following.
(i) The number N of customers served in the first busy period is the first weak descending
ladder epoch of (Sn).
(ii) The length I of the first idle period is given by I = −SN , where SN is the first weak
descending ladder height of (Sn).
Thus (N, I) may be handled by the ladder methods discussed earlier. In fact, (N, T ) may
also be handled similarly: see Kingman (1962b), (1966).

Many-server queues. For the queue GI/G/s with s servers, the theory is much more
fragmentary when s > 1. Kiefer & Wolfowitz (1955), (1956) show that the appropriate
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definition of the traffic intensity is now ρ := b/(as): when ρ < 1, the queue is stable - the
s-vector of the servers’ virtual waiting times converges to equilibrium. They also obtain
an analogue of Lindley’s equation, and several other results. For background on many-
server queues, see e.g. de Smit (1973b), (1973c) and the references cited there. A study of
higher-dimensional random walks motivated by queueing theory has been given by Cohen
(1992).

Lindley equations in more general contexts. Lindley equations have been studied in higher
dimensions, and in contexts such as branching random walk (II, §7.4). For details, see
Karpelevich, Kelbert and Suhov (1994), Biggins (1998).

§6. Continuous time. We saw above that the fluctuation theory of random walks (Sn)
involved the maximum process (Mn), and also (Mn − Sn), whose distributions are given
in terms of the Wiener-Hopf factors of the random walk. In continuous time, the natural
analogue of a random walk is a Lévy process X = (Xt), whose distribution is specified by
its Lévy exponent, ψ(.) say:

E exp{sXt} = exp{tψ(s)} (<s = 0)

(here ψ is given by the Lévy-Khintchine formula in terms of its Lévy measure ν, which
governs the jumps of the process X: see e.g. Bertoin (1996)). The analogues of (Mn),
(Mn − Sn) are X̄, X̄ −X, where X̄ is the supremum process:

X̄t := sup{Xs : 0 ≤ s ≤ t}.

It turns out that both Spitzer’s identity and the Spitzer-Baxter identity - or first
and second factorization identities - have analogues for Lévy processes. For a Lévy process
X with Lévy exponent ψ, and σ > 0, there is a Wiener-Hopf factorization

σ/(σ − ψ(s)) = ψ+
σ (s)ψ−σ (s),

where
(i) ψ+

σ (s) is analytic in <s < 0, continuous and non-vanishing in <s ≤ 0, is the Laplace
transform of an infinitely divisible probability law on the right half-line, and gives the
distributions of X̄:

ψ+
σ (s) = σ

∫ ∞

0

e−σtE exp{sX̄t}dt

= exp{
∫ ∞

0

(esx − 1)
∫ ∞

0

t−1e−σtP (Xt ∈ dx)dt},
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(ii) similarly for ψ−σ (s) in <s > 0, <s ≥ 0 and the left half-line, and ψ−σ (s) gives the
distributions of X̄ −X:

ψ−σ (s) = σ

∫ ∞

0

e−σtE exp{s(Xt − X̄t)}dt

= exp{
∫ 0

−∞
(esx − 1)

∫ ∞

0

t−1e−σtP (Xt ∈ dx)dt}.

For proofs, see Greenwood (1975), (1976), Greenwood & Pitman (1980a), (1980b), and for
the applied background, Bingham (1975).

The Wiener-Hopf factors ψ±σ are thus the key to the fluctuation theory of Lévy
processes X; however, given the Lévy exponent ψ of X it is not in general possible to
evaluate the integrals above explicitly. But it is possible to do this in the one-sided case:
when the Lévy measure - or spectral measure - ν is concentrated on one half-line. Such an
X is called spectrally positive if ν vanishes on (−∞, 0) (X has no negative jumps), spectrally
negative if ν vanishes on (0,∞) (X has no positive jumps) - see e.g. Bertoin (1996), VII for
background. This is indeed fortunate: not only are the Wiener-Hopf factors available in
this case (they may be evaluated in terms of the inverse function η of ψ: see e.g. Bingham
(1975), Th. 4a), but it is just this case which is important in practice, as it occurs in the
applied probability models of queues and dams, to which we turn below.

Splitting times. The last ‘ladder epoch’ -

ρt := sup{s ≤ t : X̄s = Xs},

the last time the supremum to date was attained - is an example of what is called a
splitting time. It is far from a stopping time (ρt depends on all of σ{Xs : 0 ≤ s ≤ t}),
and one is accustomed to use conditional independence at a stopping time, by the strong
Markov property. Nevertheless, one can use ρt to split the path {Xs : 0 ≤ s ≤ t} to
date into the pre-ρt and post-ρt fragments, and these are independent. The use of splitting
times in this context - fluctuation theory of Lévy processes - is due to Greenwood & Pitman
(1980a). Splitting times were introduced by Williams (1974) (Brownian motion), Jacobsen
(1974), Millar (1977a), (1977b) (Markov processes); for a textbook treatment, see Rogers
& Williams (1994), III.49.

Queues and dams. The discrete-time framework of III.5 focusses on the individual cus-
tomers. Suppose, however, that we focus on the server, and study his work-load (amount
of service-demand in the system), as a function of time - which is continuous. It is now

36



more natural to use a stochastic process formulation throughout. For the GI/G/1 queue
above, the input process (the point process of customer arrivals) is a renewal process; for
the most important special case - when the inter-arrival time distribution A is exponential
- this renewal process is a Poisson process, which is Markovian (and is the only renewal
process with the Markov property). The queue is now called M/G/1, to emphasise the
Markovian nature of the input stream. The cumulative service demand to date, U(t), is a
compound Poisson process; if Xt := t−Ut, X = (Xt) is a spectrally negative Lévy process.
If Vt denotes the virtual waiting-time at time t - the time that a hypothetical customer
arriving at time t would have to wait, or the service-load facing the server - then

Vt = X̄t −Xt;

see Takács (1962) for this result, and for background. Thus, for instance, the server is
idle when X has a ladder epoch. One can think of the pent-up service demand as being
‘stored’ in the queue, and this suggests that the queueing model above extends to other
storage models, such as those of dams. This is indeed the case; see Bingham (1975) for
details.

§7. Barrier problems. Suppose we are interested in the time and place of first passage
to or over a positive barrier x, starting at 0. The first-passage time process τ = (τx) may
be analysed together with the maximum process M = (Mn), as these are pathwise inverse:
Mn ≥ x iff τx ≤ n. The Wiener-Hopf factors needed above to handle Mn suffice also to
handle τx. One is dealing here with random walks on a half-line (Spitzer (1964), IV).

Suppose instead one starts with a random walk at the origin, and runs it till it first
exits from an interval [−y, x] (0 < x, y) containing the origin. Such two-barrier problems
are harder: one has here a random walk on an interval (Spitzer (1964), V).

A detailed treatment of such first-passage problems for Markov processes is given
by Kemperman (1961). Results of this type are relevant to sequential analysis in statistics,
where one samples until the test statistic exits from an interval, accepting one of two
hypotheses depending on which barrier exit is across. For background, see e.g. Shiryaev
(1973), Ch. IV.

Similar one- and two-barrier problems arise in continuous time for Lévy processes
(for a Wiener-Hopf formulation of the one-barrier case, see e.g. Bingham (1975), Th. 1e).
They have applications to queues and dams: queues with finite waiting-room, and finite
dams - which may overflow as well as be empty. For such applied background, see e.g.
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Bingham (1975), §7 and the references there, particularly to the works of Takács. For a
very simple proof of the principal explicit result in this area, see Rogers (1990).

§8. Higher dimensions and algebraic extensions. The classical results of Part I on
random walk in one dimension generalise, for the most part, to higher dimensions. It is
natural to ask whether this is true of the fluctuation theory of Part III. The situation here
is clearly different and less positive: we deal here with the maximum partial sum, and the
maximum is with respect to the total ordering on the real line IR. For IRd, d ≥ 2, no such
total ordering exists - though partial orderings do.

The half-line [0,∞) plays a key role in Spitzer’s identity on IR - via the positive
parts S+

n of the partial sums Sn - and the key property of the half-line relevant here is that
of being a convex cone (closed under vector addition and multiplication by non-negative
scalars). A close analogue of the Spitzer-Baxter identity, giving the joint distribution
of the time and place of first exit of a random walk in IRd from a convex cone, was
given by Greenwood & Shaked (1977), who gave applications to queueing and storage
systems in d dimensions (see also Mogulskii & Pecherskii (1977)). This joint law is given
in terms of what one calls a Wiener-Hopf factor for the cone, by analogy with the one-
dimensional case. Now in d dimensions for d ≥ 2, the number of convex cones needed to
fill out the whole of IRd is greater than two, except for the case of two cones which are
complementary half-spaces. This situation is really one-dimensional, on projecting onto
the normal through the origin to the hyperplane bounding the complementary half-spaces.
Thus a genuinely higher-dimensional fluctuation theory requires at least three Wiener-
Hopf factors (Kingman (1962a) observed that a two-factor theory must be essentially
one-dimensional, as above; the multi-factor theory was later developed by Greenwood &
Shaked (1977)).

The Sparre Andersen equivalence principle, however, does not extend from one to
higher dimensions. For details, see e.g. Hobby & Pyke (1963a), (1963b), (1963c), Pyke
(1973), §4.3.2.

The algebra of queues. One of the shortest proofs of Spitzer’s identity is that of Wendel
(1958). Kingman (1966), §§2, 3 gave a systematic treatment of the algebraic structure of
this and related results, isolating the concept of a Wendel projection. Kingman (1966) also
discusses the Wiener-Hopf technique in this connection (§6), combinatorial aspects (§7:
these go back to Spitzer (1956)), and the concept of a Baxter algebra (§13). Kingman’s
algebraic approach is primarily motivated by the theory of the single-server queue above;
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the case of a many-server queue, which as we saw in III.5 is much harder, is discussed
briefly in Kingman (1966), §12.

Combinatorics on words. The algebraic and combinatorial aspects of Spitzer’s identity and
related results have also been studied in connection with the subject of combinatorics on
words. The connection is due to Foata & Schützenberger (1971), and has been developed
in the book Lothaire (1983) (Lothaire is the pen-name of a group of mathematicians
including Schützenberger and co-workers). See in particular Chapter 5 there by Perrin (the
combinatorial content of Spitzer’s identity is Th. 5.4.3, and Sparre Andersen’s equivalence
principle is Prop. 5.2.9), and Chapter 10 by Foata.

§9. Distribution-free results and non-parametric statistics.

Empiricals. Recall the classical setting of the Kolmogorov-Smirnov test of non-parametric
statistics. We draw a random sample of size n from a population distribution F ; we use
the n readings Xi to form the empirical distribution function

Fn(x) :=
1
n

∑n

k=1
I(Xk ≤ n);

thus Fn has a jump of size 1/n at each order statistic - the readings arranged in increasing
order. By the Glivenko-Cantelli theorem (or Fundamental Theorem of Statistics), Fn

converges to F uniformly on the whole line, with probability one. Thus if

Dn := sup{|Fn(x)− F (x)| : x ∈ IR}

is the discrepancy between Fn and F ,

Dn → 0 (n →∞) a.s.

(the one-sided version D+
n := sup{Fn(x) − F (x) : x ∈ IR} is also useful). To test the

hypothesis that the (unknown) population distribution is some specified F , we need to
know the distribution of Dn under this hypothesis. Provided only that F is continuous
(so the readings are all distinct, and the order statistics defined unambiguously), the
distribution of Dn is the same for all F , and so has a distribution-free character (like that
of the discrete arc-sine law of III.3). This enables one to use the above to construct a
non-parametric test for the null hypothesis that the population distribution is F . For the
distribution-free nature of Dn, see e.g. Feller (1968), III.1 Example (c), Feller (1971),
I.12. For the limit distribution of

√
nDn, see Feller (1971), X.6, or Billingsley (1968)

(Billingsley uses weak convergence theory to derive this limit distribution in terms of the
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Brownian bridge). This test - the Kolmogorov-Smirnov test - is one of the corner-stones
of non-parametric statistics; for background, see e.g. Shorack & Wellner (1986).

One can define statistics Dn, D+
n of Kolmogorov-Smirnov type in IRd, but for

d ≥ 2 the distribution-free character is lost (Simpson (1951)). Nevertheless, the limit
distributions of Dn, D+

n are known (Kiefer & Wolfowitz (1958)).

Greatest convex minorants. If X1, · · · , Xn are i.i.d., Sparre Andersen (1953/4), II used
his results on fluctuation theory to show that the number of sides of the greatest convex
minorant (GCM) of the graph {k,

∑k
j=1Xj}n

1 is the same as that of the number of cycles in
a randomly chosen permutation on n objects - and thus, the GCM statistic is distribution-
free. This distribution is also that of the number of (upper) records in (X1, · · · , Xn) (Foster
& Stuart (1954)), and is given by

pr = |Sr
n|/n! (r = 1, · · · , n),

where |Sr
n| is the modulus of the Stirling number of the first kind (the coefficient of zr

in z(z + 1). · · · .(z + r − 1)). A survey of combinatorial results of such kinds and their
statistical applications is given by Barton & Mallows (1965).

In an improving population, records become more frequent, and so the GCM
statistic is informative for tests for trend: testing a null hypothesis H0 against an alternative
hypothesis H1, where

H0 : µ1 = · · · = µn, H1 : µ1 ≤ · · · ≤ µn;

here µi is the mean of Xi (Brunk (1960), using Sparre Andersen’s result). There is a similar
test based on medians (Brunk (1964), using Spitzer’s combinatorial lemma). For textbook
accounts of such statistical inference under order restrictions, see Barlow et al. (1972),
Robertson et al. (1988). Problems of this type are topical in environmental statistics and
studies of global warming, for example.

§10. Postscript. As we have seen, fluctuation theory in one dimension is remarkably
well-developed and complete, as regards both theory and applications. By contrast, the
situation in higher dimensions is much less complete, and our knowledge here remains
fragmentary by comparison. Study of the higher-dimensional case has several motivations,
of which we mention three here to close: mathematical interest, and the needs of non-
parametric statistics in higher dimensions and the theory of queues with many servers.
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