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§1. Introduction

Given a function f : [2,∞) → [0,∞), the irregularity of the sequence of primes p

means that the sequence f(p) will also be irregular, for reasonably regular f . To obtain
reasonable regularity, one needs to sum, and consider arithmetic sums of the form

F (x) :=
∑

p≤x
f(p).

Often divisibility properties are under study, when one needs to consider the double sums

1
x

∑
2≤n≤x

∑
p|n

f(p).

We consider Abelian results, passing from behaviour of f to that of single or double sums as
above, Tauberian theorems - converse implications under additional conditions (Tauberian
conditions), and Mercerian theorems, in which we pass from some comparison statement
between f and a sum to a conclusion on f alone.

This line of work may be traced to a seminal paper of Pólya in 1917 ([P]; see also
Pólya & Szegö [PS, Part II, Ch. 4, No. 156]). Our two main tools are the Karamata
theory of regular variation (originated in 1930: see [BGT]) and the Wiener Tauberian
theory (originated in 1932: see Hardy [H], Widder [W]). Pólya’s achievement is all the
more striking in that neither of these tools was available to him.

This study arises from a fusion of two recent lines of work. On the arithmetic sums
side, our interest was stimulated by a series of studies by De Koninck & Ivić [DeKI1,2,3].
On the Abelian-Tauberian-Mercerian side, we make use of recent work of our own [BI5],
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itself a sequel to a series of earlier studies [BI1-4].
To take a motivating example, consider the case f(x) ≡ 1. Then

∑
p|n

1 = ω(n),

the number of prime divisors of n counted without multiplicity, and the double sum above
is

1
x

∑
2≤n≤x

∑
p|n

1 =
1
x

∑
n≤x

ω(n),

the average order of ω. This has been studied since Hardy and Ramanujan in 1917 ([HR];
[HW, Th. 430]). A refinement with a more precise error term is in Tenenbaum [T, I.5.3,
Th. 6]:

1
x

∑
n≤x

ω(n) = log log x + c1 + O(1/ log x) (x →∞), (1.1)

where c1 = 0.261497 . . . is a known constant ([HW, Th. 430]; see also [HW, Th. 427, 428]).
Our methods give

1
λx

∑
n≤λx

ω(n)− 1
x

∑
n≤x

ω(n) ∼ log λ

log x
(x →∞) ∀λ > 1, (1.2)

or equivalently (by the ‘representation theorem for Π’: [BGT, Th. 3.6.6])

1
x

∑
n≤x

ω(n) = C +
∫ x

2

(1 + o(1))
dt

t log t
+ o

( 1
log x

)
(1.3)

for some constant C.
Neither of these two results contains the other; we pause to compare them. In (1.1),

which is classical in character, it is the order of magnitude of each of the three terms that
counts. In (1.3), new in character to our knowledge, it is the behaviour under differencing
that counts. The ’1’ term in the integrand gives the log log x term in (1.1) in order of
magnitude, and the main term log λ/ log x in (1.2) on differencing. The o(1) term in the
integrand gives merely o(log log x) in order of magnitude, but o(1/ log x) on differencing
(by the Uniform Convergence Theorem for Π: [BGT, Th. 3.1.16]). The two error terms,
both o(1/ log x), may be combined, and the constant C, whose value is immaterial, goes
out on differencing. Our result thus provides a new complement to (1.1), of a different
character to the classical ones: the Erdös-Kac central limit theorem, and its Berry-Esseen
refinement, the Rényi-Turán theorem [T, III.4.4].

Turning to single sums F (x) :=
∑

p≤xf(p), exactly the same remarks apply to the
classical formula ∑

p≤x
1/p = log log x + c1 + o(1/ log x) (1.4)
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([T, I.1.4, Th. 9]; [HW, Th. 427] with o(1) error term); our methods give the alternative
form ∑

p≤x
1/p = C +

∫ x

2

(1 + o(1))
dt

t log t
+ o

( 1
log x

)
. (1.5)

Similar remarks apply to Mertens’ first theorem, which in its modern form is

∑
p≤x

log p

p
= log x + O(1) (1.6)

([T, I.1.4, Th. 7], [HW, Th. 425]). We obtain

∑
p≤x

log p

p
= C +

∫ x

1

(1 + o(1))
dt

t
+ o(1). (1.7)

The occurrence of representations like ours with two error terms, one under the
integral sign and one not, is characteristic of the theory of regular variation, in both its
Karamata and de Haan forms (for which see e.g. [BGT, Ch. 1,2] and [BGT, Ch. 3]
respectively). It is discussed in, e.g., [B, p. 223], itself suggested by [DS]; both these
studies, like the present paper, were motivated by number theory.

We now introduce the terminology needed to formulate our results. For ρ ∈ IR, we
write Rρ for the (Karamata) class of functions g regularly varying with index ρ: positive,
measurable, and with

g(λx)/g(x) → λρ (x →∞) ∀λ > 0.

Functions in R0 are called slowly varying; we use ` for the generic slowly varying function.
For ` ∈ R0, the (de Haan) class Π, or Π`, is the class of measurable g with

{g(λx)− g(x)}/`(x) → c log λ (x →∞) ∀λ > 0

for some constant c ∈ IR, called the `-index of g. For a kernel k : (0,∞) → IR, for which
the Mellin convolution

ǩ(s) :=
∫ ∞

0

t−sk(t)dt/t

converges absolutely in some strip (possibly a line) in the complex s-plane, we write

(f ∗ k)(x) :=
∫ ∞

0

k(x/t)f(t)dt/t

for the Mellin convolution of f and k, when absolutely convergent. We have

∑
2≤n≤x

∑
p|n

f(p) =
∑

p≤x
f(p)[

x

p
], (1.8)
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where [.] denotes the integer part. This leads to the relevance of the particular kernel

k(x) := I(1,∞)(x).[x]/x, (1.9)

with Mellin transform

ǩ(s) = ζ(1 + s)/(1 + s), (1.10)

where ζ(.) is the Riemann zeta function (for background on which see [I], [Ti]). This kernel
is that relevant to the work of Pólya cited earlier; accordingly, we call it the Pólya kernel.

In [DeKI1], De Koninck and Ivić showed that, for ρ > 0 and ` ∈ R0,

f(x) ∼ xρ`(x) (x →∞) (1.11)

implies
∑

2≤n≤x

∑
p|n

f(p) ∼ xρ+1`(x)
log x

.
ζ(ρ + 1)
ρ + 1

(x →∞). (1.12)

Note that (1.11) and (1.12) together imply the comparison statement

∑
n≤x

∑
p|n

f(p) ∼ f(x).
x

log x
.C (x →∞), (1.13)

where

C =
ζ(ρ + 1)
(ρ + 1)

. (1.14)

In [DeKI3, Th. 4], De Koninck and Ivić showed that (1.13) with C > 0 implies (1.11), so
also (1.12), for some ρ > 0 and ` ∈ R0, and then C is the unique solution of (1.14).
They called this result ‘Tauberian’. We take a different view: we call results of the
form (1.11) ⇒ (1.12) Abelian, those of the form (1.12) ⇒ (1.11) under additional con-
ditions Tauberian, the conditions (on f) being Tauberian conditions, and those of the form
(1.13) ⇒ (1.11) Mercerian. For background to this terminology, see [BGT, Ch. 4,5] and
[BI1-5]. For single sums

∑
p≤xf(p), it will be seen that the (Mercerian) ‘comparison con-

stant’ is 1/(1 + ρ), with general (Karamata) case ρ > −1 and boundary (de Haan) case
ρ = −1, while for double sums

∑
n≤x

∑
p|nf(p), the comparison constant is ζ(1+ρ)/(1+ρ),

with general case ρ > 0 and boundary case ρ = 0.
Our agenda in this paper is the following:

(i) establishing our differencing results for the arithmetic functions above;
(ii) the Tauberian implication (1.12) ⇒ (1.11) for the case ρ > 0 under the Tauberian
condition that f is non-decreasing (Theorem 3.1);
(iii) the corresponding Abelian and Tauberian theorems for the case ρ = 0 (Theorem 5.1,
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containing (1.2), (1.3) above, and Theorem 5.3);
(iv) a Tauberian theorem of de Haan type based on Wiener Tauberian theory (Theorem
4.2), rather than Korenblum theory as in [BI5, Th. 4.1];
(v) an Abelian theorem for the single sums

∑
p≤xf(p), Theorem 2.1(i) (containing (1.5),

(1.7) above), its Tauberian counterpart, Theorem 2.1(ii), and Mercerian results, Theorems
2.2 (ρ > −1) and 2.4 (ρ = −1);
(vi) a simplified and extended form of the Mercerian theorem of De Koninck & Ivić [DeKI3,
Th. 4], Theorem 3.2;
(vii) a special-kernel Mercerian theorem, Theorem 2.3, of independent interest. This pro-
vides a complement to de Haan’s theorem [BGT, Th. 3.7.3].

In §2 below we prove Abelian, Tauberian and Mercerian theorems for the single
sums

∑
p≤x f(p). Writing

π(x) :=
∑

p≤x
1

for the simplest and most important of such sums, we use the Prime Number Theorem
(PNT) in the form

π(x) =
∫ x

2

dt

log t
+ R(x) (2 ≤ x < ∞), (1.15)

where, as in [DeKI1,3]

R(x) = O(xe−
√

log x) (x →∞). (1.16)

(The error term O(xe−c
√

log x) for some c > 0, used in [T, II.4.1], would also do; for the
best error term known, see [I, Ch. 12]).

In §3 we turn to the double sum 1
x

∑
n≤x

∑
p|nf(p). Our method is to reduce (1.12)

to ∫ x

2

f(t)
log t

[
x

t
]dt ∼ xρ+1`(x)

log x
.
ζ(ρ + 1)
(ρ + 1)

. (1.17)

Writing

f̃(x) := I[2,∞)(x)f(x)/ log x, ˜̀(x) := `(x)/ log x, (1.18)

one rewrites (1.17) in convolution form as

1
x

∫ x

2

f(t)
log t

[
x

t
]dt = (k ∗ f̃)(x) ∼ xρ ˜̀(x)ǩ(ρ) (x →∞), (1.19)

with k the Pólya kernel as above. The Tauberian theorem [BI5, Th. 3.1], based on
Korenblum’s form of the Wiener Tauberian theorem, then allows one to pass from (1.19)
to (1.11), under the Tauberian condition that f be (for simplicity) non-decreasing. In
the Tauberian result Theorem 3.1, we pass from (1.12) for ρ > 0 to (1.11) by this route,
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following this with its Mercerian counterpart, Theorem 3.2. In §4, we give a Tauberian
theorem for Π-variation for systems of kernels (see [BI5] for the systems aspect), for use
in §5.

Finally, in §5 we consider the case ρ = 0. We prove the Abelian result (Theorem
5.1) that

f(x) ∼ `(x) (x →∞) (` ∈ R0) (1.20)

implies
1
x

∑
n≤x

∑
p|n

f(p) ∈ Π˜̀ with ˜̀-index 1; (1.21)

note that f(x) ≡ 1 gives
∑

p|n1 = ω(n), so this gives (1.2), (1.3). We also prove the
Tauberian counterpart, Theorem 5.2, passing from (1.21) to (1.20) under the Tauberian
condition that f be (for simplicity) non-increasing. We find it necessary to restrict ` here,
by ∫ ∞

`(x)e−
√

log xdx/x < ∞ (1.22)

and

log x = O(`(x)) (1.23)

(here and below, ‘x →∞’ will be understood in limits and asymptotic statements). Now
(1.22) is not too restrictive, being satisfied by `(x) = 1, `(x) = log x, and other familiar
examples (though it fails for `(x) = exp(

√
log x) and other such ‘rapidly growing’ slowly

varying functions). Much more serious is (1.23), which fails for `(x) ≡ 1, although this
case is relevant to (1.1)-(1.3), one of our motivating examples. We suspect that (1.23)
and possibly (1.22) are inessential, but it may be that such restrictions reflect the greater
delicacy of the case ρ = 0. Our method of proof (the obvious and standard one: see e.g.
[T], [DeKI1-3]) uses integration by parts to reduce (1.21), written in ‘convolution sum’
form by (1.8), to the convolution integral form

(k ∗ f̃) ∈ Π˜̀ with ˜̀-index 1, (1.24)

and it is here that (1.22), (1.23) are needed (see §5, (5.6) and Step 4 of the proof).
We note that an extension of the work of §5 to include the case `(x) ∼ 1, if possible,

would provide an ‘asymptotic arithmetic characterization of the identity function’, to adapt
the terminology of De Koninck et al. [DeKKP].

Tauberian implications of the form (1.24) ⇒ (1.20) are considered in [BI5, Th.
4.1], using Korenblum’s theorem. However, this result is not applicable here, because of
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restrictions on our knowledge of the zero-free region of the Riemann zeta-function. The
best zero-free region known is of the form

σ ≥ 1− C(log t)−2/3(log log t)−1/3 (t ≥ t0) (s = σ + it)

for some constants C and t0 [I, Ch. 6]. The method of [BI5] would require a zero-free
region of ǩ in (1.10) of the form −ε < <s < ε for some ε > 0, that is, a half-plane
σ ≥ 1 − ε for ζ(s), far beyond what is known. Of course, the error term in PNT and the
zero-free region of ζ(s) are intimately linked; for quantitative results here, see [I, Th. 12.3].

§2. Single sums

For completeness, we begin with

Theorem 2.0. (i) For ρ > −1, (1.11) implies

∑
p≤x

f(p) ∼ xρ+1`(x)
log x

.
1

(ρ + 1)
(x →∞). (2.1)

(ii) Conversely, under the Tauberian condition that f is monotone, (2.1) implies (1.11).

Proof. (i) The Abelian assertion is proved in [DeKI2].
(ii) The converse follows as in the proof of the Monotone Density Theorem [BGT, Th.
1.7.2], or of Theorem 2.1 below; we omit the details.

We turn now to the limiting case ρ = −1, motivated by cases such as (1.4)-(1.7).
The Tauberian content of the second part is a classical monotonicity argument, as in e.g.
[BGT, §§1.7.3, 3.6.5].

Theorem 2.1. (i) For f : [2,∞), ` ∈ R0, ˜̀(x) := `(x)/ log x,

f(x) ∼ `(x)/x (x →∞) (2.2)

implies ∑
p≤x

f(p) ∈ Π˜̀ with ˜̀-index 1. (2.3)

(ii) Conversely, if f is non-increasing, (2.3) implies (2.2).

Proof. (i) We first prove the Abelian assertion (2.2) ⇒ (2.3). Since the right of (2.2) is
measurable, we may assume without loss that the left, f , is measurable.
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Take λ > 1. For g Riemann integrable on [1, λ], we can prove

log x

x

∑
x<p≤λx

g(p/x) →
∫ λ

1

g(t)dt,

as in the proof of Pólya’s theorem: see [P], [PS, Part II, Ch. 4, No. 156], [BGT, §6.4.4],
or the proof of Lemma 5.2 below. In particular,

log x
∑

x<p≤λx
1/p →

∫ λ

1

dt/t = log λ. (2.4)

By the Uniform Convergence Theorem [BGT, Th. 1.2.1], for any ε > 0, (2.2) gives M =
M(ε) with

1− ε ≤ pf(p)
xf(x)

≤ 1 + ε (M ≤ x ≤ p ≤ λx).

So with F (x) :=
∑

p≤x f(p), F (λx)− F (x) is bounded between (1± ε)xf(x)
∑

x<p≤λx1/p

for x ≥ M . By (2.4), the sum here is asymptotic to log λ/ log x, and by (2.2) xf(x)/ log x ∼
`(x)/ log x = ˜̀(x). So for large enough x, F (λx)− F (x) is bounded between (1± 2ε)˜̀(x).
Taking upper and lower limits of {F (λx)− F (x)}/˜̀(x) yields (2.3).
(ii) For the Tauberian part, assume (2.3) and f non-increasing. By (2.3),

∑
x<p≤λx

f(p) ∼ ˜̀(x) log λ =
`(x)
log x

. log λ ∀λ > 1.

The monotonicity of f now yields

∑
x<p≤λx

f(p) ≤ f(x){π(λx)− π(x)} ∼ xf(x)
log x

(λ− 1)

(using π(x) ∼ x/ log x, the PNT without remainder). Combining,

lim infx→∞
xf(x)
`(x)

≥ log λ

(λ− 1)
,

and letting λ ↓ 1,

lim infx→∞
xf(x)
`(x)

≥ 1.

Similarly, the limsup is ≤ 1, and (2.2) follows.

For ` ∈ R0, ` is locally bounded on [M,∞) for M large enough [BGT, Lemma
1.3.2]. Then

L(x) :=
∫ x

M

˜̀(x)
dt

t
=

∫ x

M

`(x)
dt

t log t
(2.5)
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defines another slowly varying function, with

L(x)/˜̀(x) = L(x) log x/`(x) →∞,

by [BGT, Prop. 1.5.9] (for further background on the link between L and `, see [BGT §3.7,
p. 162, 164]). Thus ` ≡ 1 gives L(x) ∼ log log x, while `(x) = log x gives L(x) ∼ log x.
The ‘second-order’ statement (2.3), in terms of ` or ˜̀, thus gives in particular a cruder
‘first-order’ statement in terms of L.

COROLLARY. For ` such that
∫∞

`(t)dt/t log t = ∞, (2.2) implies

∑
p≤x

f(p) ∼ L(x).

Example 2.1. (i) Taking ` ≡ 1 in the Corollary gives

∑
p≤x

1/p ∼ log log x, (2.6)

which is (1.4) without constant or remainder term.
(ii) Taking `(x) ∼ log x yields ∑

p≤x

log p

p
∼ log x, (2.7)

which is (1.6) without remainder term.

We now turn to the Mercerian aspects, beginning with the case ρ > −1. This uses
Karamata’s theorem [BGT, Th. 1.6.1], the prototype of Mercerian theorems in regular
variation.

THEOREM 2.2. Let f : [2,∞) → [0,∞) be left-continuous and monotone (non-

decreasing or non-increasing). If

∑
p≤x

f(p) ∼ C.
x

log x
.f(x) (2.8)

for some C ∈ (0,∞), then f ∈ Rρ with ρ = C−1 − 1.

Proof. First note that we must have
∑

p f(p) = ∞. For
∑

p f(p) < ∞ would give f(x) ∼
const. log x/x, and then (2.7) would contradict

∑
p f(p) < ∞. Thus

∑
p f(p) = ∞, and so

by (2.8),
xf(x)/ log x →∞. (2.9)
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Now ∑
p≤x

f(p) =
∫

[2,x]

f(t)dπ(t),

with π the prime-counting function. So by (1.15),

∑
p≤x

f(p) =
∫ x

2

f(t)
log t

dt +
∫

[2,x]

f(t)dR(t).

Now π, and so R, is right-continuous. Setting R(x) = 0, f(x) = f(2) for x < 2, we may
use integration by parts ((A1) in the Appendix, with R as f and f as g) to write

∫

[2,x]

f(t)dR(t) = f(x)R(x) + O(1)−
∫

[2,x)

R(t)df(t).

The weak form R(x) = O(x/e
√

log x) = o(x/ log x) and (2.9) show that the integrated
terms are o(xf(x)/ log x). Now

∫

[2,x)

R(t)df(t) <<

∫

[2,x)

te−
√

log tdf(t)

= xe−
√

log xf(x) + O(1) +
∫ x

2

f(t){ 1
2
√

log t
− 1}.e−

√
log tdt.

Again, the integrated terms are o(xf(x)/ log x). The integral is

<<

∫ x

2

f(t)
log t

dt.

If
∫∞
2

f(t)dt/ log t converged, (2.9) would give
∫ x

2
f(t)dt/ log t = o(xf(x)/ log x). This and

the argument above would give
∑

p≤xf(p) = o(xf(x)/ log x). But this contradicts our
Mercerian assumption (2.8), and so

∫ ∞

2

f(t)
log t

dt = ∞.

Thus behaviour at infinity dominates, and so

∫ x

2

{ 1
2
√

log t
− 1}e−

√
log tf(t)dt = o(

∫ x

2

f(t)
log t

dt).

Combining, ∑
p≤x

f(p) = {1 + o(1)}
∫ x

2

f(t)
log t

dt + o(
xf(x)
log x

).
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This and our Mercerian assumption (2.8) give

∫ x

2

f(t)
log t

dt ∼ C.
xf(x)
log x

.

By Karamata’s theorem, f(x)/ log x ∈ Rρ with C = 1/(1 + ρ). That is, f ∈ Rρ with
ρ = C−1 − 1, as required.

We turn now to the Mercerian theorem in the limiting case ρ = −1. First, recall
the Matuszewska indices of a positive function [BGT, §2.1.2]. The upper Matuszewska
index α(f) is the infimum of those α for which there exists a constant C = C(α) for which,
for each Λ > 1,

f(λx)/f(x) ≤ C{1 + o(1)}λα (x →∞) uniformly in λ ∈ [1, Λ];

dually, the lower Matuszewska index is the supremum of those β for which there exists a
constant D = D(β) such that for each Λ > 1,

f(λx)/f(x) ≥ {1 + o(1)}λβ (x →∞) uniformly in λ ∈ [1,Λ].

One says that f has bounded increase, f ∈ BI, if α(f) < ∞, bounded decrease, f ∈ BD, if
β(f) > −∞.

Theorem 2.3 below is a Mercerian theorem, complementary to de Haan’s theorem
[BGT, Th. 3.7.3, (3.7.12)]. Its Mercerian content is [BGT, Th. 5.2.3], a form of the
Drasin-Shea theorem, the principal Mercerian theorem for non-negative kernels.

THEOREM 2.3. Let g be non-negative and measurable on (0,∞), with g ∈ BD ∪ BI.

If ∫ λx

x

g(t)dt/t ∼ g(x) log λ (x →∞) (2.10)

for some λ > 1, then g ∈ R0.

Proof. Writing k(x) := I(λ−1,1)(x),
∫ λx

x
g(t)dt/t = (k ∗ g)(x) in convolution form. Then

(2.10) is

(k ∗ g)(x)/g(x) → log λ.

The Mellin convolution is

ǩ(s) = (λs − 1)/s (s 6= 0), log λ (s = 0),
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the strip of convergence being the whole complex s-plane C. By [BGT Th. 5.2.3], ǩ(ρ) =
log λ for some ρ ∈ IR, and g ∈ Rρ. The functional form of ǩ above forces ρ = 0, and so
g ∈ R0 as required.

Remark. Theorem 2.3, a special-kernel Mercerian theorem involving one λ, may be com-
pared with [BI5, Th. 6.1], a general kernel Mercerian theorem involving two (logarithmi-
cally incommensurable) λs.

The extension of Theorem 2.2 to the boundary case ρ = −1 has a Mercerian
hypothesis involving differencing. Its Mercerian content is Theorem 2.3.

THEOREM 2.4. If f : [2,∞) → [0,∞) is left-continuous, non-increasing, and

∑
x<p≤λx

f(p) ∼ xf(x)
log x

. log λ (2.11)

for some λ > 1, then f ∈ R−1.

Proof. Integrating by parts as before,

∑
x<p≤λx

f(p) =
∫

[x,λx]

f(t)dπ(t) =
∫ λx

x

f(t)
log t

dt +
∫

[x,λx]

f(t)dR(t).

Integrate the second integral by parts: as before, the integrated terms are o(xf(x)/ log x).
Applying (A1) as before, we obtain

∫

[x,λx)

R(t)df(t) = o
(xf(x)

log x

)
.

So (2.11) says that ∫ λx

x

f(t)
log t

dt ∼ xf(x)
log x

. log λ.

Since f non-increasing implies xf(x)/ log x ∈ BI, Theorem 2.3 gives xf(x)/ log x ∈ R0, or
f ∈ R−1.

§3. Double sums: ρ > 0
Recall the Abelian result of [DeKI1]: (1.11) ⇒ (1.12). We begin with the Tauberian
converse. Its Tauberian content is [BI5, Th. 3.1].

THEOREM 3.1. For ρ > 0 and f positive and non-decreasing, (1.12) implies (1.11).

Proof. Given f non-decreasing, we can find g continuous and non-decreasing agreeing with
f on the positive integers. Since (1.11) for g implies (1.11) for f , we may (and shall) take

12



f continuous.
Step 1. By non-decrease of f ,

∑
p≤2x

f(p)[
2x

p
] ≥

∑
x≤p≤2x

f(p) ≥ f(x){π(2x)− π(x)}.

By (1.8) and (1.12), the left is O(xρ+1`(x)/ log x), while by PNT the second factor on the
right is ∼ x/ log x. So

f(x) << xρ`(x). (3.1)

On the other hand,

∑
p≤x

f(p)[
x

p
] ≤ xf(x)

∑
p≤x

1/p ∼ xf(x) log log x,

by (2.6). So (1.12) gives

f(x) >>
xρ`(x)

log x log log x
. (3.2)

We claim ∑
p≤x

f(p)[
x

p
] = {1 + o(1)}

∫ x

2

f(t)
log t

[
x

t
]dt + o(xρ+1`(x)). (3.3)

Now ∑
p≤x

f(p)[
x

p
] =

∫ x

2

f(t)dπ(t)

=
∫ x

2

f(t)
log t

[
x

t
]dt +

∫

[2,x]

f(t)[
x

t
]dR(t).

(3.4)

We integrate the second integral on the right by parts. The integrated term is zero (as
[x/x+] = 0 and R(2−) = 0); the integral term is (the negative of)

∫

[2,x]

R(t)d{f(t)[
x

t
]} =

∫ x

2

R(t)[
x

t
]df(t) +

∫

[2,x]

R(t)f(t)d[
x

t
],

by Theorem B of the Appendix. Since

x

t
≤ [

x

t
] + 1 ≤ 2[

x

t
] (2 ≤ t ≤ x),

(1.16) and (3.1) give, on integrating by parts,
∫ x

2

R(t)[
x

t
]df(t) << x{f(x)e−

√
log x + O(1) +

1
2

∫ x

2

f(t)
t
√

log t
e−
√

log tdt}

<< o(xρ+1`(x)/ log x) +
∫ x

2

[
x

t
]
f(t)
log t

{
√

log te−
√

log t}dt

= o(xρ+1`(x)/ log x) + o(
∫ x

2

f(t)
log t

[
x

t
]dt)

13



(recall the bounds (3.1) and (3.2)). On the other hand, arguing as in the proof of [DeKI3,
Lemma 2],

∫

[2,x]

R(t)f(t)d[
x

t
] = −

∑
n≤x/2

f(x/n)R(x/n) << xf(x)e−C
√

log x

for some C > 0, by (3.2), or o(xρ+1`(x)/ log x) by (3.1). Combining, we obtain (3.3).
Step 2. Using (3.3), our assumption (1.12) is

(k ∗ f̃)(x) ∼ xρ ˜̀(x)ǩ(ρ), (3.5)

using the notation of (1.18), with k the Pólya kernel (so ǩ(s) = ζ(1 + s)/(1 + s)). Now
with µ the Möbius function, for s = σ + it with σ > 1 we have

|ζ(s)| ≤
∑∞

n=1
|1/ns| =

∑∞
1

1/nσ = ζ(σ),

while

|1/ζ(s)| = |
∞∑
1

µ(n)/ns| ≤
∞∑
1

1/nσ = ζ(s)

([T, (1.1.4)], or [I, (1.84)]. Combining,

1/ζ(σ) ≤ |ζ(s)| ≤ ζ(σ).

So for σ > 0,
| log |ζ(1 + σ + it)|| ≤ log |ζ(1 + σ)|,

uniformly in t, while log |(1 + σ + it)| = O(log t) as t → ±∞. So for σ > 0 and ε > 0,
ǩ(s) = ζ(1 + s)/(1 + s) satisfies the Nyman-Korenblum decay condition

log |ǩ(σ + it)

exp
(

π|t|
2ε

) → 0 (t → ±∞)

(with much to spare); see [BI5] for background and references here. Now the Tauberian
condition that f is non-decreasing gives xf̃(x) = xf(x)/ log x eventually non-decreasing,
whence log f̃(x) is slowly decreasing [BGT, §1.7.6]. Now [BI5, Th. 3.1] applies, and from
(3.5) we obtain

f̃(x) ∼ xρ ˜̀(x),

or f(x) ∼ xρ`(x), which is (1.11) as required.

We finish this section with the Mercerian complement to the result above. This
extends and simplifies [DeKI3, Th. 4], the result that motivated this study. The Mercerian
content is the Drasin-Shea theorem [BGT, Th. 5.2.1].
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THEOREM 3.2. If f : [2,∞) → [0,∞) is continuous and non-decreasing, and

∑
2≤n≤x

∑
p|n

f(p) ∼ C.
x

log x
.f(x)

for some constant C ∈ (0,∞), then f ∈ Rρ, where ρ is the unique positive solution to

C = ζ(1 + ρ)/(1 + ρ).

Proof. First, since
∫∞
2

dt/t log t diverges and f is non-decreasing,
∫∞
2

f(t)dt/t log t diverges
also.

As in [DeKI3, Lemma 1], set

S1(x) := x
∑

p≤x
f(p)/p (x ≥ 2).

Then, by [DeKI3, (4.6)], for ε > 0 small enough there exists X = X(ε) with

(C − ε)
xf(x)
log x

≤ S1(x) ≤ (1 + ε)(1 + C)
xf(x)
log x

(x ≥ X). (3.6)

As before,
S1(x)

x
=

∫ x

2

f(t)
t log t

dt +
∫

[2,x]

f(t)
t

dR(t).

We integrate the second integral by parts, to give

f(x)R(x)
x

+ O(1)−
∫ x

2

R(t)d{f(t)
t
}.

Arguing as before, and using (3.6),

f(x)R(x)
x

<< f(x)e−
√

log x = o
( f(x)

log x

)
= o

(S1(x)
x

)
.

The O(1) term is o(
∫ x

2
f(t)dt/t log t), as the integral diverges as x →∞. The integral gives

another f(x)R(x)/x term, handled as above, and two integral terms. These are
∫ x

2

R(t)
t

df(t) <<

∫ x

2

e−
√

log tdf(t)

= f(x)e−
√

log x + O(1) +
1
2

∫ x

2

f(t)
t log t

{
√

log te−
√

log t}dt

= o
(S1(x)

x

)
+ o

(∫ x

2

f(t)
t log t

dt
)
,

as above, and
∫ x

2

R(t)f(t)
t2

dt <<

∫ x

2

f(t)
t

e−
√

log tdt = o
(∫ x

2

f(t)
t log t

dt
)
.
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Combining, we obtain
S1(x)

x
∼

∫ x

2

f(t)
t log t

dt.

Arguing as in the proof of [DeKI3, Lemma 1], it follows from this that there exist
a, b (0 < a < b < ∞) such that, for X1 large enough,

xa ≤ f(x) ≤ xb (x ≥ X1). (3.7)

Hence, as in the proof of [DEKI, Lemma 2] but with df in place of f ′(t)dt,

∑
p≤x

f(p)[
x

p
] ∼

∫ x

2

f(t)
log t

[
x

t
]dt,

and so our Mercerian assumption is
∫ x

2

f(t)
log t

[
x

t
]dt ∼ C

xf(x)
log x

,

or using again the Pólya kernel k and notation of §1,

(k ∗ f̃)(x) ∼ Cf̃(x). (3.8)

Now (3.7) implies that the upper order ρ := ρ(f) of f , where

ρ(f) := lim supx→∞
log f(x)

log x
,

which equals ρ(f̃) also, lies in [a, b]. Now f is non-decreasing, so xf̃(x) = xf(x)/ log x is
eventually non-decreasing, so f̃ ∈ BD. By the Drasin-Shea theorem, (3.8) implies f̃ ∈ Rρ

with C = ζ(1+ρ)/(1+ρ). So f ∈ Rρ also. The root ρ is unique, since r 7→ ζ(1+r)/(1+r)
is strictly decreasing on (0,∞) [DeKI3, Lemma 5].

§4. A Wiener Tauberian theorem for Π-variation

In this section we prove a Wiener (rather than a Korenblum) Tauberian theorem
for Π-variation, which we need in the last section.

We first prove the following form of the Wiener-Pitt Tauberian theorem for systems
of kernels.

THEOREM 4.1. Let c ∈ IR, kµ (µ ∈ M) be a system of L1((0,∞), dt/t)-class kernels.

We assume that the Mellin transforms ǩµ(z) (µ ∈ M) have no common zeros on the line

<z = 0. Let f : (0,∞) → IR be bounded, measurable, and slowly decreasing. If

(kµ ∗ f)(x) → c (x →∞) ∀µ ∈ M, (4.1)
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then

f(x) → c (x →∞). (4.2)

Proof. The proof is almost the same as the case for M a singleton (for which see e.g.
Folland [Fo, Th. (4.72)]). The set L of all h ∈ L1 := L1((0,∞), dt/t) satisfying

(h ∗ f)(x) → cȟ(0) (4.3)

is a closed, translation-invariant, linear subspace of L1. So for h ∈ L and y ∈ (0,∞),
h(y−1.) ∈ L, so L is a closed ideal of L1 [Fo, Th. (2.43)]. Since L includes {kµ : µ ∈ M}
by assumption, it follows from Wiener’s theorem [Fo, (4.63)] that L = L1. This implies
that (4.3) holds for every h ∈ L1. In particular, taking h(x) := x−1I(1,∞)(x), we find that

1
x

∫ x

0

f(t)dt → c.

Since f is slowly decreasing, (4.2) follows (see e.g. [BGT, Th. 1.7.5]).

Here is our Tauberian theorem for Π-variation. Its rather complicated formulation
is dictated by the needs of §5 below. For a substantial application, see Example 4.1 below.

THEOREM 4.2. Let ` ∈ R0 and c ∈ IR\{0}, −∞ < σ1 < ρ < σ2 < ∞, and k : (0,∞) →
IR be a measurable function whose Mellin transform ǩ(z) is absolutely convergent in the

strip ρ < <z < σ2. For µ, x ∈ (0,∞), set

kµ(x) := (µx)−ρk(µx)− x−ρk(x),

and assume

(k1) there exist µ1, µ2 ∈ (0,∞)\{1} such that (log µ1)/(log µ2) is irrational and kµi(x) ≥ 0
for x > 0 and i = 1, 2;

(k2) ǩ(z) has a holomorphic continuation to σ1 < <z < σ2, except for a simple pole at

z = ρ with residue c;

(k3) ǩ(z) has no zeros on <z = ρ.

Let f : [0,∞) → [0,∞) be non-negative, measurable, locally bounded, vanish in a neigh-

bourhood of zero, and satisfy the Tauberian condition

limλ↓1lim infx→∞inft∈[1,Λ]
(tx)−ρf(tx)− x−ρf(x)

`(x)
≥ 0 (T)

(so = 0). Then

x−ρ(k ∗ f)(x) ∈ Π` with `-index c (4.4)
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implies (1.11).

Proof. For µ ∈ M , 0 < <z < σ2 − ρ, we have

ǩµ(z) =
∫ ∞

0

t−z{(µt)−ρk(µt)− t−ρk(t)}dt/t

= (µz − 1)ǩ(z + ρ).

By (k2), ǩµ(z) has a holomorphic extension to the strip σ1−ρ < <z < σ2−ρ, and satisfies

ǩµ(0) = limz→0
(µz − 1)

z
.zǩ(z + ρ) = c log µ. (4.5)

So by (k1), the integrals ǩµi(z) :=
∫∞
0

t−zkµi
(t)dt/t (i = 1, 2) converge absolutely in

σ1 − ρ < <z < σ2 − ρ. For otherwise the Vivanti-Pringsheim theorem (Doetsch [D, Ch. 4,
§5]) would give a singularity in this region, a contradiction. Also, ǩµ1(z) (i = 1, 2) have no
common zeros on <z = 0. For by (k3), the possible common zeros belong to

{ 2πin

log µ1
: n ∈ ZZ} ∩ { 2πim

log µ2
: m ∈ ZZ},

which is equal to {0} by (k1), while z = 0 is not a zero, by (4.5).
Now, (4.4) implies that, for i = 1, 2,

(kµi ∗ f̃)(x) ∼ `(x)ǩµi(0) (x →∞),

where
f̃(x) := x−ρf(x) (x > 0).

By [BGT, Th. 4.6.5], we have
f̃(x) = O(`(x)).

We may assume that ` and 1/` are bounded on each (0, a]. If we set

g(x) := f̃(x)/`(x) (0 < x < ∞),

then g is bounded on (0,∞). As in the proof of [BGT, Th. 4.8.3], it follows that

(kµi ∗ g)(x) → ǩµi (i = 1, 2),

and that g is slowly decreasing. So by Theorem 4.1, we obtain

g(x) → 1,
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or (1.11), as required.

Example 4.1. The following kernel - the Kohlbecker kernel - occurs in the theory of parti-
tions in number theory [BGT, §6.1]:

k(x) :=
1

(xe1/x − 1)
(x > 0).

The Mellin transform is

ǩ(z) = Γ(1 + z)ζ(1 + z) (<z > 0)

(cf. [BGT, p. 233]). So ǩ has an analytic continuation to <z > −1, with a unique
singularity at z = 0, which is a simple pole with residue 1. Also, ǩ(z) has no zeros on the
line <z = 0. Since k is increasing on (0,∞), (k1) holds with ρ = 0 and µ1 = 2, µ2 = 3 say.
So if f is as in Theorem 4.2 with ρ = 0, then k ∗ f ∈ Π` with `-index 1 implies f(x) ∼ `(x)
as x →∞ by the theorem. See Geluk [G1], [G2] and [BGT, §6.1]. We note that we cannot
apply [BI, Th. 4.1] to this kernel since this would require a zero-free region of ζ(z) of the
form 1− ε < <z for some ε > 0. This goes far beyond what is known; for the links between
such zero-free regions and the error term in PNT, see [I, Th. 12.3].

§5. Double sums: ρ = 0
We turn now to the behaviour of double sums in the boundary case ρ = 0, which

proves more delicate than the case ρ > 0 of §3.
We begin with the Abelian result:

THEOREM 5.1. For ` ∈ R0, ˜̀(x) := `(x)/ log x, f : [2,∞) → [0,∞), (1.20) implies

(1.21).

We first prove the following extension of Pólya’s theorem [P] (see also [PS, Part
II, Ch. 4, No. 156]).

LEMMA 5.2. With `, f as above and g Riemann integrable on [0, 1], (1.20) implies

log x

x`(x)

∑
p≤x

g(p/x)f(p) →
∫ 1

0

g(t)dt. (5.1)

In particular,
log x

x`(x)

∑

p≤x

f(p)
(x

p
− [

x

p
]
)
→ 1− γ, (5.2)
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where γ is Euler’s constant.

Proof. Let a ∈ [0, 1]. By Theorem 2.0(i),

log x

x`(x)

∑
p≤x

I[0,a](p/x)f(p) =
log x

x`(x)

∑
p≤ax

f(p) → a. (5.3)

Since g is Riemann integrable, for ε > 0 we can approximate it above by H and below by
h, where H,h are linear combinations of indicators I[0,a] (a ∈ [0, 1]) with

∫ 1

0

H(t)dt−
∫ 1

0

h(t)dt < ε.

Then the sum
∑

p≤x f(p)g(p/x) is approximated above and below by the same sums with
H, h for g. For h,

log x

x`(x)

∑

p≤x

f(p)h(p/x) →
∫ 1

0

h(t)dt,

by (5.3) and linearity, and similarly for H. Taking upper and lower limits, since ε > 0 is
arbitrary we obtain (5.1).

For (5.2), take

g(t) :=
1
t
− [

1
t
] (0 < t ≤ 1)

and use ∫ 1

0

(1
t
− [

1
t
]
)
dt = 1− γ

(Pólya [P]; [BGT, p. 296]).

Proof of Theorem 5.1. By (1.8)

1
λx

∑

n≤λx

∑

p|n
f(p)− 1

x

∑

n≤x

∑

p|n
f(p) =

1
λx

∑

p≤λx

f(p)[
λx

p
]− 1

x

∑

p≤x

f(p)[
x

p
]

=
1
λx

∑

p≤λx

f(p)
(
[
λx

p
]− λx

p

)
+

∑

x<p≤λx

f(p)/p− 1
x

∑

p≤x

f(p)
(
[
x

p
]− x

p

)
.

Multiply through by log x/`(x) and let x → ∞. By Lemma 5.2, the first and third terms
on the right tend to γ − 1. By Theorem 2.1, the second term tends to log λ. This gives
(1.21) as required.

We turn now to the Tauberian converse, whose Tauberian content is Theorem 4.2.
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THEOREM 5.3. If f : [2,∞) → [0,∞) is non-decreasing and ` satisfies (1.22) and

(1.23), then (1.21) implies (1.20).

Proof. Step 1. Since [2x/p] ≥ 2[x/p],

1
2x

∑
p≤2x

f(p)[
2x

p
]− 1

x

∑
p≤x

f(p)[
x

p
]

=
∑

p≤x
f(p)

( 1
2x

[
2x

p
]− 1

x
[
x

p
]
)

+
1
2x

∑

x<p≤2x

f(p)[
2x

p
]

≥ 1
2x

∑

x<p≤2x

f(p)[
2x

p
] ≥ f(x)

2x

∑

x<p≤2x

1

=
f(x)
2x

(π(2x)− π(x)) ∼ f(x)
2x

.
x

log x
,

by PNT. Using (1.8) and (1.21), the left ∼ (log 2).˜̀(x) = (log 2).`(x)/ log x. So the esti-
mates above give

f(x) = O(`(x)). (5.4)

Step 2. As before, we may take f continuous. By (1.8), (3.4) and integration by parts,

∑

n≤x

∑

p|n
f(p) =

∫ x

2

f(t)
log t

[
x

t
]dt−

∫ x

2

R(t)[
x

t
]df(t)−

∫

[2,x]

R(t)f(t)d[
x

t
].

So for x ≥ 2 and λ > 1, the difference

1
λx

∑

n≤λx

∑

p|n
f(p)− 1

x

∑

n≤x

∑

p|n
f(p)

can be written as

I(λx)− I(x) + II(λx)− II(x)− III(λx) + III(x),

where:
I(x) :=

1
x

∫ x

2

f(t)
log t

[
x

t
]dt, II(x) :=

1
x

∫

[2,x]

R(t)[
x

t
]df(t),

III(x) :=
1
x

∫

[2,x]

R(t)f(t)d[
x

t
].

We shall show
II(λx)− II(x) = o(˜̀(x)), (5.5)
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III(x) → −
∫ ∞

2

f(u)R(u)
u2

. (5.6)

From (5.6), III(λx) − III(x) = o(1). This is o(˜̀(x)) = o(`(x)/ log x), the accuracy we
work to in the other terms, if the (restrictive) condition (1.23) holds.

Assuming (5.5), (5.6) for the moment, our assumption (1.21) now gives

I(λx)− I(x) ∼ ˜̀(x) log λ.

This is (1.24), using Mellin-convolution notation, with k the Pólya kernel.
By (1.10), the Mellin transform ǩ(s) = ζ(1+s)/(1+s) is holomorphic in <s > −1

except for a simple pole at the origin with residue 1, and has no zeros on the line <s = 0
([I, Th. 1.5], or [T, II.3 Th. 9]). Since

[nt] ≥ [n[t]] = n[t] (n ∈ IN, t > 0),

we see that k(nt)−k(t) ≥ 0 for 0 < t < ∞. So k satisfies (k1) in §4 with ρ = 0 and µ1 = 2,
µ2 = 3 say.

Since f is non-decreasing, we have for λ > 1

inf
t∈[1,λ]

f̃(tx)− f̃(x)
˜̀(x)

= inf
t∈[1,λ]

( f(tx)
log(tx)

− f(x)
log x

)
.
log x

`(x)

≥ f(x)
`(x)

.
(− log λ)
log(λx)

,

so by (5.4)

lim inf
x→∞

inf
t∈[1,λ]

f̃(tx)− f̃(x)
˜̀(x)

≥ 0.

This gives the Tauberian condition (T) of Theorem 4.2 for f̃ , ˜̀ and ρ = 0.
By Theorem 4.2, we now conclude f̃(x) ∼ ˜̀(x), or f(x) ∼ `(x), which is (1.20) as

required.
Step 3. It remains to prove (5.5) and (5.6); here we prove (5.5). Now

II(λx)− II(x) =
1
λx

∫ λx

x

R(t)[
λx

t
]df(t) +

∫ x

2

R(t)
( 1

λx
[
λx

t
]− 1

x
[
x

t
]
)
df(t). (5.7)

By the bounds (1.16) on R and (5.4) on f ,

1
λx

∫ λx

x

R(t)[
λx

t
]df(t) <<

∫ λx

x

e−
√

log tdf(t)

= o(˜̀(x)) +
1
2

∫ λx

x

e−
√

log t

t
√

log t
.f(t)dt.
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Since e−
√

log x ∈ R0, the integral on the right is, by (5.4), of order

∫ λx

x

e−
√

log t

t
√

log t
.`(t)dt ∼ e−

√
log x

√
log x

`(x).
∫ λ

1

du/u = o(`(x)/ log x) = o(˜̀(x)).

So the first term on the right of (5.7) is negligible to the required accuracy. For the second,
since

[
λx

t
] + 1 ≥ λx

t
≥ λ[

x

t
] ≥ [

λx

t
]− λ,

we have
| 1
λx

[
λx

t
]− 1

x
[
x

t
]| ≤ 1

x
,

hence ∫ x

2

R(t)
( 1

λx
[
λx

t
]− 1

x
[
x

t
]
)
df(t) <<

1
x

∫ x

2

te−
√

log tdf(t).

Integrate by parts: the right is

O(x−1) + e−
√

log xf(x) +
1
x

∫ x

2

( 1
2
√

log t
− 1

)
e−
√

log tf(t)dt.

By (5.4), this is of order

o(˜̀(x)) +
1
x

∫ x

2

e−
√

log t`(t)dt.

Since
∫ x

2
e−
√

log t`(t)dt ∼ x`(x)e−
√

log x = o(x`(x)/ log x) = o(x˜̀(x)), we see that the right
hand side of (5.7) is o(˜̀(x)), and this proves (5.5).
Step 4. It remains to prove (5.6); it is here that we will need the restriction (1.22) on `

(we have already used the more restrictive (1.23) in applying (5.6)). Set

g(x) := f(2/x)R(2/x) (0 < x ≤ 1).

Then
2x.III(2x) = −

∫

(1,x]

R(2x/u)f(2x/u)d[u]

= −
∑

1<n≤x

R(2x/n)f(2x/n)

= −
∑

1<n≤x

g(n/x).

Now by (1.16) and (5.4),

∫ 1

0

|g(t)|dt = 2
∫ ∞

2

f(u)|R(u)|
u2

du <<

∫ ∞

2

`(u)e−
√

log udu/u < ∞,
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by (1.22). So g ∈ L1[0, 1]: g is Lebesgue integrable. To prove (5.6), it suffices to prove

1
x

∑

1<n≤x

g(n/x) →
∫ 1

0

g(t)dt (x →∞). (5.8)

Now for any ε ∈ (0, 1), g is bounded on [ε, 1] (as f , R are locally bounded), and has at
most countably many discontinuity points on [ε, 1] (f is monotone, and R differs from the
step-function π by the continuous function

∫ x

2
dt/t log t). So g is Riemann integrable on

[ε, 1]. So
1
x

∑

εx<n≤x

g(n/x) →
∫ 1

ε

g(t)dt.

On the other hand, since
1

t− 1
≤ 2

t
≤ 2

[t]
(t ≥ 2),

we have for x ≥ 1/ε

1
x

∑

1<n≤εx

|g(n/x)| = 1
x

∑

1<n≤[εx]

|f(2x/n)R(2x/n)|

<<
1
x

∫ [εx]+1

2

f(2x/[t]).
2x

[t]
. exp{−

√
log(2x/[t])}dt

≤ 1
x

∫ [εx]+1

2

f(2x/(t− 1)).
2x

t− 1
. exp{−

√
log(x/(t− 1))}dt

=
1
x

∫ εx

1

f(2x/t).
2x

t
. exp{−

√
log(x/t)}dt

= 2
∫ 2x

2x/[εx]

f(u)
u

. exp{−
√

log(u/2)}du

≤ 2
∫ ∞

2/ε

f(u)
u

. exp{−
√

log(u/2)}du.

By (5.4) and (1.22), the right can be made arbitrarily small for ε > 0 small enough,
uniformly in x ≥ 1/ε. Thus (5.8) follows, completing the proof.

Note. 1. Regarding (1.22), this comes from (1.16), which is not the best error term known
for PNT. We could weaken (1.22), at some extra cost in complexity, but this is hardly
worthwhile as (1.23) is much more restrictive.
2. We note also that (1.22) is unnecessary under the Riemann Hypothesis, or specifically,
that ζ is zero-free in σ > 1− δ for some δ > 0. For this implies that the error term R(x)
is O(x1−δ′) for some δ′ > 0. If we could use this in Step 4 of the proof above, we could
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dispense with (1.22) with much to spare.
3. The best hope of avoiding (1.23) would be to replace (5.6) by a difference statement like
(5.5), namely III(λx)− III(x) = o(˜̀(x)). Such a statement would require cancellation in
the argument above, and we did not succeed in constructing such a proof.
4. The Lebesgue-integrable function g is unbounded, since fR is (by (1.16) and (1.20)).
The validity of (5.8) suggests that g is directly Riemann integrable (see e.g. [Fe, XI.1]).
This in turn suggests an alternative route to (5.8).

Appendix.
We gather here what we need on integration by parts for Lebesgue-Stieltjes in-

tegrals. For proofs, variants and background, see e.g. [M, p. 114], [S, p. 204], [BGT,
Appendix 6.2].

We write BVloc(IR) for the class of all f : IR → IR that are locally of bounded
variation. Note that f need not be right-continuous here. Recall that, for f ∈ BVloc(IR)
the signed measure df on IR is defined so that

df((c, d)) = f(d−)− f(c+) (−∞ < c < d < ∞),

whence df({c}) = f(c+)− f(c−) and

df((c, d]) = f(d+)− f(c+), df([c, d)) = f(d−)− f(c−), df([c, d]) = f(d+)− f(c−).

THEOREM A. For f, g ∈ BVloc(IR) with f right-continuous and g left-continuous,

−∞ < c < d < ∞,

∫

(c,d]

g(t)df(t) = f(d)g(d)− f(c)g(c)−
∫

[c,d)

f(t)dg(t), (A1)

∫

[c,d]

g(t)df(t) = f(d)g(d+)− f(c−)g(c)−
∫

[c,d]

f(t)dg(t). (A2)

THEOREM B. With f, g as in Theorem A1 and h ∈ BVloc(IR) continuous,

∫

[c,d]

f(t)d{g(t)h(t)} =
∫ d

c

f(t)g(t)dh(t) +
∫

[c,d]

f(t)h(t)dg(t).
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