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Abstract

We survey some aspects of the classical prediction theory for stationary

processes, in discrete time (§1). We turn in §2 to continuous time, with

particular reference to reproducing-kernel Hilbert spaces and the sampling

theorem. We discuss the discrete-continuous theories of ARMA-CARMA,

GARCH-COGARCH and OPUC-COPUC in §3. We compare the various

models treated in §4 by how well they model volatility, in particular volatility

clustering. We discuss the infinite-dimensional case in §5, and turn briefly to

applications in §6.
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1. Prediction theory of stationary sequences

We begin with the most classical aspect: the prediction theory of stationary stochas-

tic processes X = (Xn) in discrete time n and one dimension (we take X complex-

valued). There is a good account of this subject up to 1958 in Grenander and Szegő

[41], and a great deal of relevant recent work in the books of Simon [91], [92] and [93].

We use as our main reference here the recent surveys by the first author [10] and [11]

on the probabilistic side, together with its statistical sequel [12].

We take X zero-mean, with finite variance, (wide-sense) stationary, with autocovari-

ance function γ = (γn), γn = E[XnX0] (the variance is constant by stationarity, so we
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may take it as 1 for convenience). Let H be the Hilbert space spanned by X = (Xn) in

the L2-space of the underlying probability space, with inner product (X,Y ) := E[XY ]

and norm ‖X‖ := [E(|X|2)]1/2. In the complex plane, we write T for the unit circle,

the boundary of the unit disc D, parametrised by z = eiθ; unspecified integrals are

over T.

1.1. The Cramér Representation and Kolmogorov Isomorphism Theorem

There are four key ingredients here.

(i) There is a process Y on T with orthogonal increments with Fourier coefficients Xn,

by the Cramér representation

Xn =

∫
einθdY (θ) ∀ n ∈ Z (CR)

(Cramér [24] in 1942, [25] §§5.6, 5.7, 7.5; cf. [28], X.4); Y is called the Cramér process.

One can regard Y as a random measure, in which case Y is orthogonally scattered (the

term is due to Masani in 1968, [72]).

(ii) There is a measure µ on T, the spectral measure, with

E[Y (A)Y (B)] = µ(A ∩B).

In differential notation, this can be written

E[dY (θ)2] = dµ(θ), (SM)

which shows the link with Itô calculus. See e.g. Doob [28], IX.1, X.4.

(iii) The autocorrelation function γ then has the spectral representation

γn =

∫
e−inθdµ(θ) (SR)

(Herglotz’s theorem of 1911).

(iv) One has the Kolmogorov isomorphism between H (the time domain) and L2(µ)

(the frequency domain) given by

Xt ↔ eit· : θ ∈ T 7→ eitθ (KIT )

(Kolmogorov [61] in 1941) for integer t (as time is discrete). A good historical account of

Kolmogorov’s work in this area is in Shiryaev [90], ‘The forties (1940-49)’. For modern



ASPECTS OF PREDICTION 3

textbook accounts of the background, see e.g. Janson [51], Ch. 13 (and Notes to Ch.

13), Kallenberg [55], 7.4. Stochastic processes expressible as the Fourier transform of

another process are called harmonizable (the term is due to Loève [67]; [68], 37.4); see

Karhunen [56], Rao [83].

To exclude trivialities, it is necessary to take µ to have infinite support (to be non-

trivial: Simon [91], p.1); we shall do so in what follows, without further comment.

For reasons of space, we omit state-space models and the Kalman filter; see e.g.

[20], Ch. 12.

1.2. Verblunsky’s theorem and the partial autocorrelation function (PACF)

By the Kolmogorov Isomorphism Theorem, all the information relevant to the time-

evolution of the process is encoded in the spectral measure µ (though other relevant

information, such as the distribution of the Xn, is not; see below). Now to model

µ one has to proceed non-parametrically, as the situation is infinite-dimensional, and

it might be preferable to use a sequence representation rather than a measure (or

density-function) representation. This option is available to us, thanks to Verblunsky’s

theorem (S. Verblunsky in 1935 and 1936; the result is named and proved in [91], to

which we refer for details), according to which one has a bijection (the Verblunsky

bijection) between the spectral measures µ (probability measures on T) and sequences

α = (αn)n∈Z, with each αn ∈ D (α is the Verblunsky sequence, or partial autocorrelation

function (PACF); αn are the Verblunsky coefficients). Verblunsky discovered this result

in analysis; it was re-discovered much later in statistics by Barndorff-Nielsen and Schou

in 1973 and Ramsey in 1974. It is extremely useful in statistics as it provides an

unrestricted parametrisation (all sequences with terms in the unit disc are possible; this

is not the case for the autocorrelation function (ACF) γ). Then αn is the correlation

between the residuals of X0 and Xn when regressed on the values X1, . . . , Xn−1 in

between. Using the usual notation for Hilbert-space projections,

αn := corr(Xn − P[1,n−1]Xn, X0 − P[1,n−1]X0);

see e.g. [10] for details and references.
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1.3. Orthogonal polynomials on the unit circle (OPUC)

In Szegő’s classic book [94] on orthogonal polynomials (on the real line: OPRL),

one chapter (Ch. XI) is devoted to orthogonal polynomials on the unit circle (OPUC).

Although Verblunsky is not mentioned in [94], his work is the guiding theme in the two-

volume book [91], [92]; we summarise here what we need. Recall from OPRL the key

role played by the three-term recurrence relation (Favard’s theorem); this involves two

sequences of coefficients. In OPUC, there is again a three-term recurrence relation, the

Szegő recursion, but now only one sequence of coefficients (the Verblunsky coefficients

above). For each probability measure µ on T (the spectral measure above), write Pn for

the monic orthogonal polynomials they generate (by Gram-Schmidt orthogonalization).

For every polynomial Qn of degree n, write

Q∗n(z) := znQn(1/z̄)

for the reversed polynomial. Then the Szegö recursion is

Pn+1(z) = zPn(z)− ᾱn+1P
∗
n(z).

Here the parameters αn are the Verblunsky coefficients, and lie in D by Verblunsky’s

theorem (|αn| ≤ 1 as correlations lie in D automatically; that |αn| < 1 follows from µ

being non-trivial).

The Szegő recursion is known in the time-series literature as the Levinson-Durbin

algorithm. The best linear predictor of the immediate future based on the present

and a finite segment of the past is a linear combination of the given values; their

coefficients form a triangular matrix A = (ank); the Verblunsky coefficients or PACF

are the diagonal elements in A. See e.g. Brockwell and Davis [20] §§3.4, 5.2, [10], §3.

1.4. The Wold decomposition

Write w for the spectral density in the Lebesgue decomposition of µ:

µ = µs + µac = µs + wdθ/2π.

Write σ2 for the one-step mean-square prediction error:

σ2 := E[(X0 − P(−∞,−1]X0)2].
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Call X non-deterministic (ND) if σ > 0, deterministic if σ = 0. The Wold decom-

position of 1938 ([25] 5.7, [20] §5.7; [10] §3) expresses a process X as the sum of a

non-deterministic process U (the ‘good’ part) and a deterministic process V (the ‘bad’

part):

Xn = Un + Vn;

the process U is a moving average,

Un =
n∑

j=−∞
mn−jξj =

∞∑
k=0

mkξn−k,

with the ξj – the innovations at time n – zero-mean and uncorrelated, with each other

and with V ; E[ξn] = 0, var(ξn) = E[ξ2n] = σ2. Thus when σ = 0 the ξn are 0, U is

missing and the process is deterministic. When σ > 0, the spectral measures of Un,

Vn are µac and µs, the absolutely continuous and singular components of µ (again,

the ‘good’ and ‘bad’ parts). Then the Wold decomposition agrees with the Lebesgue

decomposition of the spectral measure; in view of the Cramér representation, this is

often called Wold-Cramér concordance. It fails in dimension higher than one; see §5.

1.5. Szegő’s theorem

For a process genuinely evolving in time one expects new information as time passes:

σ > 0, non-determinism. The condition for this is Szegő’s condition (Sz) below. Szegő’s

theorem gives the equivalence of the following:

(i) σ > 0;

(ii) logw ∈ L1(T), i.e. (as
∫

logw <∞ by Jensen’s inequality)∫
logw(θ)dθ > −∞. (Sz)

(iii) α ∈ `2.

Then σ2 =
∏∞

1 (1 − |αn|2), and (Kolmogorov’s formula [61]) σ2 is the geometric

mean G(µ) of µ:

σ2 = exp
( 1

2π

∫
logw(θ)dθ

)
=: G(µ) > 0 (K)

(see e.g. [10] §4 for details and references). (The Szegő condition is visibly of entropy

type, and is related to the Gibbs variational principle of statistical mechanics.)
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1.6. The Szegő function

We now restrict to when (Sz) holds. Then the Szegő function

h(z) := exp
( 1

4π

∫ (eiθ + z

eiθ − z

)
logw(θ)dθ

)
(z ∈ D) (OF )

exists, and is an outer function (hence (OF )) in the Hardy space H2(T) on the torus

T (see e.g. [10] §4). It is an ‘analytic square root’ of w:

|h(eiθ)|2 = w(θ) : h = [w1/2]

(Nikolskii [77], Vol. 1, p.380; [76]). One has (see [49] §2, [48] for background) h(z) =∑∞
0 mnz

n: the Maclaurin coefficientsm = (mn) of h are the moving-average (MA(∞))

coefficients in the Wold decomposition. That of −1/h(z) =
∑∞
n=0 rnz

n (z ∈ D) gives

the AR(∞) coefficients r = (rn) in the (infinite-order) autoregression
∑n
j=−∞ rn−jXj+

ξn = 0 (n ∈ Z).

2. Continuous time

As always, one has to choose from context between modelling our process in discrete

or continuous time. Such matters are topical: the ARMA and GARCH models just

mentioned have led on to extensive work on continuous-time versions such as CARMA

and COGARCH.

Within the context of econometrics: data are discrete, and as a result the discrete-

time theory is the more developed. But continuous time offers advantages, such as a

setting in which one can use calculus, and model the dynamics directly. The classic

text in this area is that of Bergstrom [9]. Continuous-time econometrics, and finance,

has flourished as a result of the extensive use of stochastic calculus, in Black-Scholes(-

Merton) theory etc. (as the title of [52] bears witness).

First, one has the obvious but strikingly useful fact that the Cramér representation

(CR) of §1 allows one to pass directly to continuous time, simply by replacing the

discrete time n there by a continuous time t:

Xt =

∫
eitθdY (θ) (t ∈ R). (CR)

This emphasises dramatically the key structural role played here by the Cramér process

Y . Of course, this procedure commits us to a choice of unit of time; it works best where
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the context has a natural one.

Note first the nature of the process X = (Xt) thus defined. It is harmonizable

(§1); see Lloyd [66], Niemi [75] for early work on such harmonizable processes. In

engineering language, the compact support [−π, π] of Y makes Y band-limited, whence

Xt is a random analytic function of t ([25] §7.3, Belaev [8]). By the Paley-Wiener

theorem ([78]; [58] VI.7), X is a random entire function, of exponential type π.

2.1. The sampling theorem, Paley-Wiener spaces and RKHS

The Paley-Wiener spaces PWa (with general a > 0 rather than a = π as here)

are the motivating examples of de Branges spaces ([17]; [32] §6.1). They are also

classical examples of reproducing-kernel Hilbert spaces (RKHS) ([77], Vol. 1, B, §6.5.2).

What is needed for a Hilbert space to have a reproducing kernel is that the point-

evaluation maps be continuous; thus Hilbert spaces of continuous (and in particular,

analytic) functions have reproducing kernels. The reproducing kernel for PWa is the

sinc function (sinus cardinalis: this stems from E. T. Whittaker’s work of 1915; the

name cardinal series is from J. M. Whittaker in the 1920s; the name sinc is from P. M.

Woodward in 1953). For f ∈ PWπ, one has

f(x) =
∑
n∈Z

f(n) sinc(x− n) ∀ x ∈ R, sinc(x) :=
sinπx

πx
.

This recovery of a function everywhere on the line from its values sampled at the

integers is called the sampling theorem (or Whittaker-Shannon-Kotelnikov sampling

theorem: J. M. Whittaker [97] in 1935, C. E. Shannon in 1949, V. I. Kotelnikov in

1933). For background, see e.g. Partington [79] §7.2, Higgins ([44] §2.6.3, [45], [46],

[47]).

This works more generally. That any RKHS H with kernel K with a total orthogonal

set of point evaluation vectors δxn
has the sampling property

f(x) =
∑
n∈Z

f(xn)K(x, xn) (f ∈ H) (SP )

is Kramers’ sampling theorem [63]. Martin [71] considers such results from the point

of view of operator theory, and shows in particular that many de Branges spaces have

this property.

The sampling theorem is clearly closely connected with the Paley-Wiener theorem



8 N. H. BINGHAM and B. MISSAOUI

from the above, and is in fact an easy corollary of it (Dym and McKean [32], §2.2);

similarly for the Poisson summation formula (Boas [14]). Butzer et al. [22] show the

equivalence of all three, and of the general Parseval formula, in the band-limited case.

2.2. The Kolmogorov-Wiener filter

The prediction problem given the infinite past was studied in continuous time by

Kolmogorov [61] in 1941 (see [90]), M. G. Krein in 1944, and also by Wiener [98]; see

Doob [28], XII. Under (Sz), as before the Szegő function h exists, and is in the Hardy

space H2 on the upper half-plane; again, w = |h|2. With ĥ the Fourier transform of

h, the mean-square error of the best linear predictor of XT given {Xt : t ≤ 0} is ([31],

§5)
∫ T
0
|ĥ(t)|2dt.

Wiener’s work was done, independently of Kolmogorov, during 1940-41, restricted

for security reasons during WWII, circulated subject to this (as the ”Yellow Book”),

and published in 1949. It contains (p. 55, 59) Wiener’s detailed account of the con-

nections between his work and Kolmogorov’s, and also two mathematical appendices

by Wiener’s colleague and former pupil Levinson. Volume III of Wiener’s Collected

Works [99] contains thirteen of his papers on prediction (published 1949-59; six with

Masani, one with Akutowicz), together with commentaries (by Kailath, Akutowicz,

Masani, Salehi, Muhly and Kallianpur). These papers contain further discussion by

Wiener, of the connections between his work and Kolmogorov’s, and between discrete

and continuous time.

2.3. Prediction given a finite past

The continuous-time prediction problem given a finite segment of the past is harder,

and has been studied by Krein (1944-54) and by Dym and McKean [30], [31] and [32].

Both methods use the Kolmogorov isomorphism Xt ↔ eit· of §1 to map the given

segment {Xt : −T ≤ t ≤ T} to the Paley-Wiener space PWT . Tools used include

Krein’s theory of strings and results of Levinson and McKean [64]. Matters are too

technical to attempt a summary here; for details, see [30], [31], §§7-23, [32], Ch. 4.

The work of [64] has also been found useful in discrete time ([12], §7.4, [57]).
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3. ARMA/CARMA; GARCH/COGARCH; OPUC/COPUC

The general stationary process is an infinite-dimensional object (parametrised sev-

eral different ways in §1), but in practice one has to truncate and work finite-dimensionally.

One familiar way to do this is to use ARMA (autoregressive moving average) models;

see e.g. Box et al. [16], [20] Ch. 3, 4, 8. This is flexible and practicable, but the p+ q

parameters of the ARMA(p, q) model chosen may have little or no meaning in reality.

As in §2, one may prefer to work in continuous time (CARMA). Here the polynomials

in the ARMA(p, q) model in the lag operator (equivalently, the (forward or backward)

difference operator) are replaced by polynomials in the differentiation operator D. See

for example Brockwell [18], [19].

Variance is often not constant as above, but varies, perhaps randomly; ARCH

(autoregressive conditionally heteroscedastic) models were introduced to apply time-

series methods here, and these were generalised to GARCH models, for which see e.g.

[40]. The general case is GARCH(p, q); GARCH(1, 1) is fairly widely applicable, and

we confine ourselves to it here for simplicity.

As before, one can generalise GARCH to continuous time – COGARCH; see e.g.

Klüppelberg et al. [59],[60], Brockwell et al. [21]. Again as before, COGARCH(1, 1)

suffices for many purposes, so we confine ourselves to it here (Haug et al. [43]).

The theory of OPUC, used in §1 in discrete time, finds its continuous generalisation

in the theory of Krein systems [27], [37], and in particular Krein’s theory of strings

[32].

4. Stochastic volatility and volatility clustering

Not only does volatility vary, so that stochastic volatility models are used (as in the

GARCH models of §3), one of the stylised facts of mathematical finance is volatility

clustering. Economic life typically consists of periods of normality punctuated by crises;

the crises give rise to clusters of high volatility. This clustering of extremes happens

quite generally [2]; for background on extremes, see e.g. [35].

In the GARCH case, stationarity requires restrictions on the parameters [74]. These

involve Liapounov exponents (and Kingman’s subadditive ergodic theorem). These can

be calculated explicitly in the GARCH(1,1) case, which is usually all that is needed
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in practice ([73], §5.3.2). Stationarity also brings in a stochastic recurrence equation

(SRE), whose solution again involves Liapounov exponents. One obtains regular varia-

tion of the tails of the stationary process ([73] §5.5.2; this uses a result of Kesten in 1973

in the multi-dimensional case and of Goldie in 1991 in one dimension). A stationary

GARCH process is strongly mixing and has exponentially decaying correlations, under

general conditions (of Markov character: [73], §5.6.1). To recapitulate: for stationary

GARCH(1,1), one has heavy (regularly varying) tails and exponentially decreasing

correlations.

This connection between the time behaviour (correlation decay) and the distribution

at fixed times seems to be a reflection of the Markovian nature of the process (GARCH

in this case). In the stationary case of §1, one can have any correlation structure and

any distribution; there is no link between them, even when the process is Markovian.

For, any distribution can be the stationary distribution of a Markov chain, as in the

Metropolis-Hastings algorithm (see e.g. [87]). Although the Cramér process Y encodes

the time behaviour of X in (CR), the distribution of X0 =
∫
T dY = Y (T) (the total

mass of the complex measure Y ) can be anything. One has no way to model volatility

clustering, and this restricts the suitability of the prediction theory of §1 for financial

time series.

There is, however, no difficulty in capturing volatility clustering in other ways, in

one or many dimensions; see e.g. [13]. In finance, the dimensionality d is often high,

to reflect the holding of a balanced portfolio of many risky assets, by Markowitzian

diversification. The multivariate elliptic processes of [13] model the time-evolution of

such a d-dimensional time series using the theory of elliptical distributions [33]. One

works semi-parametrically. The parametric part of the model is (Σ, µ), where Σ is the

d × d covariance matrix and µ is the d-vector of means, both essential ingredients,

from Markowitz’ work (think of risk and return together; (co)variances measure risk,

means measure return). The non-parametric part is a one-dimensional process, the risk

driver R. Thus the burden of dimensionality is born by (Σ, µ); R models the ambient

economic or financial climate. Though this is certainly not one-dimensional in reality,

one often works with a one-dimensional proxy for it, such as a stock-exchange index.
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5. Higher dimensions

Much of the one- and finite- dimensional theory (for which see e.g. [10], [11]) extends

to infinitely many dimensions, but not all of it does. The simplest infinite-dimensional

setting is a (separable) Hilbert space; beyond that one has (separable) Banach space;

beyond that, locally convex topological vector spaces. Our main references here are

the books of Vakhania et al. [95] on Banach spaces, Kakihara [53], Schwartz [89] on

cylindrical measures and the Pesi Masani Volume [70], and the papers of (Applebaum

and) Riedle [85], [86], [6].

5.1. Hilbert space

The simplest infinite-dimensional setting is Hilbert space, and the theory here was

developed by Payen in 1967 [80]. He obtains the Wold decomposition [80, II.3], with two

components, as above. He deals with factorizability ([80, II.5]; see below), and hence

obtains [80, II.6] a three-term decomposition, one component corresponding to the

singular component of the spectral measure as before, while the ‘absolutely continuous

component’ splits into two, one part corresponding to the ‘largest factorizable part’,

the other to the residue. He studies the Szegő condition via a series decomposition

into rank-one components [80, II.8], and also continuous time [80, III].

The Hilbert-space setting brings closer together the stationary and non-stationary

cases (for commentary on the distinction, see [12]). The key concept here is harmo-

nizability (due to Loève in 1955, and subsequently studied by Cramér, M.M. Rao and

others). A (second-order) process X = (Xt) is harmonizable if it is the Fourier-Stieltjes

transform of a random measure Y . If Y is orthogonally scattered, X is stationary and

so harmonizable. There is no converse, but on a Hilbert-space H, X is harmonizable

iff it has a stationary dilation, i.e. it is the projection of a stationary process in some

larger Hilbert space K. For details see Richard [84], Kakihara [54].

The Hilbert-space methods used by Kolmogorov in 1941 to prove (KIT) are tanta-

mount to those used by Aronszajn [7] in 1950 in his theory of reproducing-kernel Hilbert

spaces (RKHS). Accordingly, the result in the Hilbert-space setting is often called

the Aronszajn-Kolmogorov theorem. See [95] III.1.3 for positive-definitive functions

(covariance kernels), IV.4.3 for orthogonally scattered measures, [69].
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The sampling theorem was extended to Hilbert space by Weston in 1949 [96].

5.2. Banach spaces

As mentioned above, our main reference for the Banach case is [95], which while

it does not consider prediction theory explicitly is nevertheless well adapted to our

purposes here.

In finite-dimensional spaces, linear prediction is always possible. In infinitely many

dimensions, this is no longer so. It is possible in the space L(Y,H) of continuous linear

operators from a Banach space Y to a Hilbert space H [23, §3].

The results above of Payen [80] on the Wold-Cramér concordance in Hilbert space

were extended to the Banach case by Schmidt [88] and Hajduk-Chmielewska [42].

For V , W topological vector spaces, write V ∗ for the dual of V , L(V,W ) for the

space of continuous operators (linear maps) from V to W . Then V has the factorization

property if every non-negative A ∈ L(V, V ∗) can be factorized as

A = T ∗T

with T a continuous operator from V into some Hilbert space (depending on A); cf.

[1, §7.3]. The factorization property is equivalent to the continuity of v 7→< Av, v >

for a non-negative A ∈ L(V, V ∗); this holds for Banach spaces, and for some but not

all locally convex topological vector spaces [39]. The Aronszajn-Kolmogorov theorem

can be extended to locally convex with the factorization property [39] and so can some

aspects of prediction theory (Alpay et al. [3]). For harmonizability, see Richard [84].

5.3. Gaussianity and prediction

Linear prediction is always possible if one restricts attention to the Gaussian case.

Even in one dimension, there is a case for doing this: there is a hierarchy of weak-

dependence conditions in the Gaussian case, and another in the general case (mixing

conditions; there is some economy in working with one rather than two hierarchies; for

background on such weak, strong and intermediate conditions, see e.g. [10]). This is

why some authors restrict to the Gaussian case throughout, as is done in the classical

book by Dym and McKean [32] (Gelfand and Vilenkin [36] discuss this (III.3.4), but

defer to probabilistic usage by working generally).
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5.4. Gaussianity and covariances

Because of this, the whole question of Gaussian measures in infinite-dimensional

settings becomes unavoidable here. This rests on Schwartz’s theory of Radon measures

and cylindrical measures [89], and in particular on the covariance operator (recall that

a zero-mean Gaussian process is characterized by its covariance), usually written Q.

The theory of covariance operators in infinitely many dimensions is considered in detail

in [95, III]. They treat the Aronszajn-Kolmogorov theorem, and they show that in

Hilbert space, a measure µ being strong second-order (square-integrable in the strong

sense) is equivalent to the covariance operator Q being nuclear (trace class). As a

nuclear operator is a product of two Hilbert-Schmidt operators and covariances, being

symmetric and positive, factorize (below), this can be expressed alternatively in the

language of Hilbert-Schmidt operators. The covariance Q factorizes as

Q = iQi
∗
Q,

with iQ the inclusion map from the range of Q to the Banach space X. So (Radon)

Gaussian measures have nice covariance: Q is nuclear, and the above leads to the

reproducing- kernel Hilbert space associated with Q [85, IV].

Returning to the general (non-Gaussian) case, linear prediction fails in general in

infinite-dimensional Banach spaces: one can find a (non-Gaussian) random element

such that linear prediction of it by Gaussian families fails [23, §7]. One can give

spectral representations of stationary processes as before, in the setting of L(Y,H) [23,

§8].

5.5. Locally convex topological vector spaces

Spaces of generalized functions are typically not normable, and neither are spaces

of holomorphic functions, etc. Instead, one needs to specify the topology in terms of a

collection of seminorms; with separability (enough for us here) sequences suffice. Often

one can use a sequence of norms and obtains a locally convex topological vector space;

the prototype here is Grothendieck’s nuclear spaces of 1955, for which see [36, I.3]

Some aspects of prediction theory can be taken over to the locally convex case; see

e.g. Alpay et al. [3].
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5.6. Random generalized functions

If one passes from functions to generalized functions (or Schwartz distributions,

though in probability theory this would overload the word distribution), random vari-

ables are replaced by random generalized functions. This was done as early as 1954 by

Itô [50]. It is argued by Gelfand and Vilenkin [36, III.1.2] that this setting is actually

more natural and realistic (’However, every actual measurement is accomplished by

means of an apparatus which has a certain inertia’. So the reading given is not an

instantaneous value, but rather an averaged value by a test function φ characterizing

the apparatus.)

6. Applications

We confine ourselves here to brief comments on the applications of prediction theory

in the infinite-dimensional case. This forms part of the extensive area of statistical

inference for stochastic processes; see e.g. Bosq [15], Antoniadis and Sapatinas [4] (who

consider El Niño), [5]. One principal field of application is functional data analysis,

for which see e.g. [81], [82], [34]. Statistical analysis of data consisting of curves is

well established; one application here is gait analysis, used to analyse the motion of

walking. Another is yield curves in the term structure of interest rates in finance; as

with anything in finance, predictive ability is of prime practical importance. The first

thing to do is to represent curves economically. Wavelet expansions are often used here;

an early and dramatic application was their use to digitize the FBI fingerprint bank .

Also used here are Karhunen-Loève expansions – again, in the space variable. Much

of functional data analysis is concerned with independent and identically distributed

(iid) data of curves. For prediction purposes, one needs to dynamicize these results,

and have the expansion coefficients evolving with time. Again, wavelets are well suited

to this purpose, as they allow one to handle time and space (or time and frequency)

together. As always, theory and applications have much to offer each other here. We

close by citing one specific application area – to prediction of electricity consumption

[26].

without which the US criminal justice system would long since have collapsed
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7. Postscript on Whittaker

We have mentioned J. M. Whittaker in §2 in connection with the sampling theorem.

John Macnaghten (Jack) Whittaker (1905-1984) was Professor of Pure Mathematics

at Liverpool University from 1933-53 (seconded during WWII, when he served on

Montgomery’s staff in 8th Army). Last semester, the first author lectured in Liverpool,

in the Whittaker Room, which has a plaque commemorating him and the sampling

theorem over the door. Whittaker went on to be Vice-Chancellor of Sheffield University

from 1953-65. There Joe Gani founded the Journal of Applied Probability in 1964,

whose 50th anniversary this volume celebrates. Joe always speaks well of Whittaker

as a Vice-Chancellor whose word could be relied on – not always the case.

Whittaker was the son of E. T. (Sir Edmund) Whittaker (1873-1956), who also

worked on cardinal series (in 1915). They were the only father-and-son pair in the

Royal Society.

8. Conclusion

The above is a necessarily brief and very partial survey of an enormous field; there

is much more to be said, and we will return to these matters elsewhere. We close

by pointing out that this illustrates the wonderful and inexhaustably rich interplay

between mathematics, probability and statistics, pure and applied. This is at the

heart of the raison d’être of the Applied Probability Trust journals, which this volume

celebrates.

It is a great pleasure for both authors to contribute to this volume. It is a par-

ticular pleasure for the first author, who has known Joe Gani all his career, and who

contributed to the 25th anniversary volume in 1988. He was then a new recruit to the

Editorial Board, and is now retired from it after many years as a Coordinating Editor.

We congratulate the Applied Probability Trust, its journals, its editors and its staff on

their first half-century, and look forward to the next one.
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topological vector spaces. Linear Alg. Appl. 431 (2009), 1257-1266.

[4] A. Antoniadis and T. Sapatinas, Wavelet methods for continuous-time prediction using Hilbert-

valued autoregressive processes. J. Multiv. Anal. 87 (2003), 133-158.

[5] A. Antoniadis, E. Paparoditis and T. Sapatinas, A functional wavelet-kernel approach for time-

series prediction. J. Roy. Statist. Soc. B 68 (2006), 837-857.
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