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DOOB: A HALF-CENTURY ON

N. H. Bingham

Abstract

Probability theory, and its dynamic aspect stochastic process the-
ory, is both a venerable subject in that its roots go back to the mid-
seventeenth century, and a young one in that its modern formulation
is comparatively recent – well within living memory. The year 2003
marks the seventieth anniversary of Kolmogorov’s Grundbegriffe, usu-
ally regarded as inaugurating modern – measure-theoretic – probabil-
ity theory (for historical background, see e.g. Bingham (2000)). It also
marks the fiftieth anniversary of Doob’s Stochastic Processes (‘Doob’
below, unless it is clear from context that we refer to J. L. Doob the
person). The profound and continuing influence of this classic work
prompts the present piece.

1 Pre-Doob

Before the emergence of measure theory, the machinery needed to handle
probability rigorously did not exist. Hardly surprisingly, the subject was
not regarded as mathematically respectable by pure mathematicians. The
wonder is that so much of lasting value was achieved – witness the books,
and work, of Markov and Poincaré, for example. Richard von Mises, writing
in the 1920s, regarded probability not only as not being fully mathematical,
but as not being fully mathematicisable.

This view had begun to change even before the Grundbegriffe. Paul Lévy
(1886-1971) published the first measure-theoretic book on probability, Cal-
cul des Probabilités, in 1925, following this with his two enduring classics,
Théorie de l’Addition des Variables Aléatoires in 1937 and Processus Stochas-
tiques et Mouvement Brownien in 1948. In his papers, Lévy made profound
contributions, not only to limit theorems – the enduring theme of his life’s
work was the central limit problem and in particular, limiting Gaussianity,
in the most natural and general setting – but also to the Lévy-Khintchine
formula and to what are now called Lévy processes. See the obituary Loève

1



(1973) for background on Lévy’s life and work. One might add that Lévy’s
writing style contrasts strongly with Doob’s. Lévy is intuitive (‘Alors, ces
probabilités sont assez petites, ...’), and discursive (the discussion ends with
what has been proved, in italics – the style of French textbooks of the time,
pre-Bourbaki). Doob is careful, formal – theorem followed by proof, in the
Landau Satz-Beweis style – and precise.

Partly at the instigation of G. H. Hardy (1877-1947), Harald Cramér
(1893-1985) wrote his influential Cambridge Tract, Cramér (1937). With
his background in pure mathematics (originally analytic number theory),
Cramér was able to take up the lead of the Grundbegriffe and present, at
greater length, a synthesis of much of the subject as it then stood. The title
of the present piece is in part a tribute to Cramér (1976).

Also coming to probability from a background in analysis was William
Feller (1906-1970). Feller began to write on probability in 1935. His deep-
est work was on the interplay between Markov processes on the one hand
and second-order linear differential operators on the other – in particular,
questions of classification and boundary conditions. The first edition of his
famous book ‘Feller Volume 1’ appeared in 1950, only three years before
Doob, and it is interesting and instructive to compare the two.

The spectacular career of Wolfgang Döblin (1915-1940), a tragic early
victim of World War II, made a profound impact on the subject (and on
Doob’s book) in the last three years of his life. For background on the
man who ended his life as Vincent Doeblin, see e.g. Lindvall (1991), Cohn
(1993). Other important influences were the work of the Russian school
(Kolmogorov, Khintchine and others), the Polish (Marcinkiewicz, Zygmund,
...), the Japanese (Itô, ...) and the American (Wiener, Stone, ...).

Before embarking on a discussion of Doob, it might be as well to comment
on the influence, pre-Doob, of Norbert Wiener (1894-1964). Wiener’s greatest
contribution to probability and stochastic processes was his 1923 construction
of Wiener measure – essentially, the rigorous proof that ‘Brownian motion is
continuous’. But in his writings of the early 1930s - on Fourier integrals, gen-
eralized harmonic analysis, Tauberian theory etc. (and in the 1940s on time
series, particularly spectral aspects, and prediction), Wiener convincingly
demonstrated the power of Fourier analysis, rigorously and solidly based on
the Lebesgue integral, Lebesgue measure and measure theory. This played
an important role in convincing the mathematical public – applied workers
as well as theoreticians – that one had to make the investment of learning
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measure theory. The resulting sea-change in attitude within the profession
helped to prepare the ground for Doob.

Doob’s book was in fact planned to be a collaborative work with Wiener.
To quote the penultimate paragraph of the Preface:

‘Chapter XII, on prediction theory, is somewhat out of place in the book,
since it discusses a rather specialized problem. It was put in because of the
importance of the subject matter, and because of the lack of material on
prediction theory, in the usual language of probability, readily available to
the American reader. I had the benefit of stimulating conversations with
Norbert Wiener on this subject’.
For background on Wiener, see e.g. his Collected Works (four volumes), the
biography Masani (1990), and the review of this, Doob (1990).

2 Doob

Joseph Leo Doob (1910-) was – like several of the probabilists already men-
tioned – originally a pure mathematician and analyst. His early interests lay
in complex analysis and potential theory. Confronted as a young man by the
great difficulty of finding an academic job during the Great Depression and
its aftermath, he took the advice of Harold Hotelling and decided to special-
ize in probability and statistics. His book cites 13 of his papers, written in
the period 1934-1951.

The unchallengeable nature of measure theory as the essential mathe-
matical language for probability, and Doob’s forthright attitudes and style,
are both well exemplified by two sentences from the third paragraph of the
Preface to Doob:

‘There has been no compromise with the mathematics of probability.
Probability is simply a branch of measure theory, with its own special em-
phasis and field of application, and no attempt has been made to sugar-coat
this fact.’

The many-sided nature of probability and stochastics – as between pure
and applied aspects, as between mathematics and statistics, etc. – is also
well exemplified by a sentence from Doob’s next paragraph:

‘There is probably no mathematical subject which shares with probabil-
ity the features that on the one hand many of its most elementary theorems
are based on rather deep mathematics, and that on the other hand many of
the most advanced theorems are known and understood by many (statisti-
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cians and others) without the mathematical background to understand their
proofs.’

Inescapably, the first problem facing the author of a book on probability
or stochastic processes remains what it was half a century ago – how to han-
dle measure theory. (The present writer met an echo of this when examining
recently in the University of Cambridge. Both measure theory and stochastic
processes are in the curriculum - but, the numbers taking the first are tiny
compared to those taking the second.) There are basically three ways one
can proceed. Firstly, one can present a non-measure theoretic treatment as
best one can. Distinguished classics of this kind include Feller (1950/57/68),
Bartlett (1955/66/78) – originally published two years after Doob but con-
ceived (with J. E. Moyal) in 1946 – and, later, Karlin and Taylor (1975),
(1981), Grimmett and Stirzaker (1982/92/2001). Second, one can expound
measure theory and probability together (or consecutively in the same book),
as in, e.g., Kingman and Taylor (1966) or Billingsley (1979/86/95). Third,
one can proceed as Doob does, and assume measure theory as known to the
reader, referring to a standard book on measure theory as needed. Doob
refers to Halmos (1950) (Paul R. Halmos was a pupil of Doob’s) – but sum-
marises what he needs of measure theory in a 24-page Supplement at the end
of the book.

The next basic problem concerns the gap between discrete and contin-
uous time. (Readers may care to ask themselves whether time is discrete
or continuous. One might reply that how one perceives or experiences time
depends on whether one uses a digital watch or one with hands. And of
course, how one perceives time affects how one models it.) The essence of
measure theory lies in the property of countable additivity. The countabil-
ity endemic here sits comfortably with the countable setting of discrete time.
(The time-set may well be finite, with the setting still having the character of
a stochastic process problem rather than one in enumerative combinatorics.
This happens in, e.g., the binomial tree model of mathematical finance, for
which see e.g. Bingham and Kiesel (1998/2004).) But countable additivity
does not sit comfortably with the uncountable time-set encountered in con-
tinuous time. Stochastic process theory – the dynamic side of probability, or
the mathematics of randomness unfolding with time – will thus, inescapably,
always be a subject presenting some difficulty to those who learn it, teach it
or write about it.

Doob begins (Chapter I: Introduction and probability background, 45p.)
with a summary of what he needs from probability. Here he treats the
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Daniell- Kolmogorov theorem (as in the Grundbegriffe) – essentially the ex-
istence theorem for a stochastic process, given the minimal raw material of
an appropriately consistent set of finite-dimensional distributions. The main
emphasis is on conditioning (Kolmogorov’s treatment of conditioning in the
Grundbegriffe, using the Radon-Nikodým theorem, being by now well es-
tablished). He closes with a treatment of characteristic functions (including
– with an eye on his intended treatment of infinite divisibility – more on
inequalities for them than most readers nowadays will know).

Doob continues with Chapter II: Definition of a stochastic process –
Principal classes, 56p. The starting-point (§1) is a consistent set of finite-
dimensional distributions, and the Kolmogorov construction from it of a
stochastic process (basically, one infinite-dimensional object unifying in-
finitely many consistent finite-dimensional objects). He addresses (§2) the
‘pitfall of uncountability’ (above): essentially, that, with an uncountable in-
dex set (in continuous time, say), the sample paths of the process may lack
enough regularity to be tractable. He addresses this with one of his key tech-
nical contributions – his theory of separability, measurability and versions.
(In brief – p.66 – separability is not a restriction on finite-dimensional distri-
butions, measurability is.) The rest of the chapter is a brief introduction to
the particular classes of stochastic process to which the remaining ten chap-
ters will be devoted. In particular, the Gaussian section contains (p.78) the
intriguing statement ‘... very few facts specifically true of Gaussian processes
are known’.

Chapter III (Processes with mutually independent random variables, 46p.)
addresses the core of probability theory, as would be expounded nowadays in
a book on probability theory at measure-theoretic level but without a specific
focus on stochastic processes. It begins with zero-one laws. It then treats
random series (including, for series with independent terms, the equivalence
of convergence almost-surely, in probability and in distribution). It proves
Kolmogorov’s strong law of large numbers. It treats infinite divisibility, and
derives the Lévy-Khintchine formula.

In Chapter IV (Processes with mutually uncorrelated or orthogonal ran-
dom variables, 22p.), the restriction to probability (or even finite) measures
is dropped. Versions in this degree of generality of the law of large numbers
and results on random series are given. So too – with a view to applications
to time series later – are results on factorization of spectral densities. Doob
emphasises that the natural setting here is that of general orthogonal series,
and accordingly refers to analysis books such as Kaczmarz and Steinhaus
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(1935/51), Stone (1932) and Zygmund (1935/59) for proofs.
Doob turns in Chapter IV (Markov processes – Discrete parameter, 64p.)

to Markov chains. Finite chains are treated in some detail. Thus, one cannot
remain in transient states forever (and so, not all states can be transient).
But, persistent (or recurrent) states are not broken down into null and pos-
itive, as in Feller, and so the non-existence of null states in finite chains is
not given. Card-shuffling is discussed (the modern reader will recall Diaco-
nis’ result, seven shuffles suffice). General state spaces (§5, p.190-218) are
treated in one go, with heroic disregard for the frailties of the reader. Topics
include Döblin’s condition and exponential convergence. Finally, the law of
large numbers and central limit theorem are proved, using ‘Döblin’s trick’
(cf. Chung (1960)).

Markov processes with continuous parameter follow in Chapter VI (57p.).
Finite chains are treated: the Q-matrix, holding times, step-function nature
of the sample paths, etc. With continuous state space, Döblin’s condition is
used; the sample paths may have discontinuities worse than jumps. Diffusions
are treated in the light of Itô’s work (1944-1951) on stochastic integrals and
stochastic differential equations.

Doob’s Chapter VII on martingales (98p.) is the most famous in the
book. Because it has been so influential, it still has a modern feel to it,
apart from terminology (thus filtrations are everywhere, but not by name;
our submartingales and supermartingales appear here as semi-martingales
and lower semi-martingales, etc.). After the basic definitions (§1), Doob
turns (§2) to games of chance, gambling systems and the Optional Stop-
ping Theorem. In §3 (Fundamental inequalities), one finds Doob’s maximal
inequality (generalizing Kolmogorov’s, itself generalizing Chebyshev’s) and
the upcrossing inequality. These are applied to convergence theorems in §4
(uniformly integrable martingales; martingale convergence; martingale ver-
sion of Borel-Cantelli; reversed martingales). Sums of independent terms are
treated in §5 (random series) and §6 (strong law). Integration and differ-
entiation follow in §§7,8, likelihood ratios and sequential analysis in §§9,10.
Continuous-parameter martingales are treated in §11 (which, at 36 pages,
again makes demands on the reader’s stamina). In particular, regularization
of paths is covered, and Lévy’s martingale characterization of Brownian mo-
tion is given. The chapter closes (§12) with applications of martingale theory
to sample-path continuity (a sample result of Lévy: sample paths of Lévy
processes have at worst jump discontinuities).

Chapter VIII (Processes with independent increments, 35p.) is devoted
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to (in modern terminology) Lévy processes. Processes with orthogonal in-
crements follow in Chapter IX (27p.). Stochastic integrals are discussed,
from the point of view of Wiener and Stone. Application is made to Camp-
bell’s theorem (shot-noise processes), and to a version of the representation
theorem for Brownian martingales.

Stationary processes are treated in discrete time (Chapter X, 55p.) and
continuous (Chapter XI, 53p.). Here one finds the strong law of large num-
bers, Bochner’s theorem, and the mathematics needed for time series in the
frequency domain (spectral representation, Wold decomposition, ...). Linear
filtering is also discussed (XI.9).

The book ends with the admittedly more specialized Chapter XII (Linear
least squares prediction – Stationary (wide sense) processes, 38p.). There is
a thorough discussion of the ‘Kolmogorov-Wiener filter’ – linear prediction
given the entire past, in the square-integrable case – the Wold decomposition
again playing a central role. Both Kolmogorov and Wiener were motivated
by wartime problems of fire control, particularly against aircraft. One source
here is Wiener’s ‘Yellow Peril’ (Wiener (1949) – based on a version of 1942
with circulation restricted by wartime security). Another is Doob’s 40-page
Berkeley Symposium paper, Doob (1949).

3 Post-Doob

There is general agreement that the two enduring classics of their time are
Feller Volume 1 and Doob. I recall ‘Kingman’s dictum’ from the sixties and
seventies – ‘It’s all in Doob’ (just as a modern stochastic analyst might say,
‘All you need is Itô’s lemma’ – a dictum I learned from Michael Harrison).

The most obvious successor to Doob, in terms of scope and aims, was
perhaps Loève (1955/60/63). Revealingly, Loève’s book split into two vol-
umes (1977, 1978) for later editions. Similarly, Gihman and Skorohod (1969)
gave rise to a three-volume work. As the field continued to develop, it be-
came clear to authors that one could no longer aim to cover everything in
stochastic processes in one book of reasonable size. Accordingly, the litera-
ture ramified, and books on particular kinds of process or particular aspects
of the field began to appear. It is interesting to observe the extent to which
Doob’s book set the research – and textbook – agenda.

Some aspects of stochastic processes are covered in any standard text
on probability. Of many such, we mention first Feller Volume 2 (Feller
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(1966/71)). This influential text was planned as part of a three-volume
work, with Volume 3 on stochastic processes. Feller’s death in 1970 pre-
vented Volume 3 being written. Feller returned repeatedly to what he had
already written, revising and polishing. Doob was content to let his book
speak for itself, and eventually ‘die quietly on the shelf’ (personal remark
to the author, 1975-6). Later probability books of comparable level include
Breiman (1968), Chung (1968/74/2001) and Billingsley (1979/86/95).

For Markov chains, the standard specialist work remains Chung (1960
/67). For Markov processes, the next generation is dominated by Dynkin
(1965), a two-volume work. The role of Döblin’s condition is reflected in a
number of variants and alternatives, under which Markov processes on gen-
eral state- spaces may be handled, to some extent, in the manner of Markov
chains. The best-known such condition is Harris recurrence. For monograph
accounts, see Nummelin (1984), Revuz (1984), Meyn and Tweedie (1993),
The role of exponentially fast convergence led to the study of geometric er-
godicity, by Kendall, Vere-Jones, Pitman, Tweedie and others.

The theory of infinite divisibility has always been intimately linked with
that of processes with (stationary) independent increments. These were pre-
viously studied under a variety of unwieldy names, but were very properly
called Lévy processes since at least the early seventies. The year after Doob
appeared, Gnedenko and Kolmogorov (1954) was published in English. A
good deal of this material appears in Fellerian style in Feller Volume 2
(1966/71). Lévy processes deserve and get a chapter in any serious text on
stochastic processes, but received two fine monograph treatments in Bertoin
(1996) and Sato (1999) – the first more probabilistic, the second more ana-
lytic.

Laws of large numbers received a monograph treatment in Révész (1968),
ergodic theorems in Krengel (1985), random series in Kahane (1985) and
random walks in Spitzer (1964).

Gaussian processes received a great deal of attention, in the Russian
school, the French (X. Fernique), the American (S. M. Berman, M. B. Mar-
cus) and the Japanese. The textbook literature includes Ibragimov and
Rozanov (1978). For further references, developments involving abstract
Wiener space, white-noise calculus etc., see Janson (1997).

The literature on time series has exploded in the last half-century. An
early post-Doob book is Whittle (1963). The Kolmogorov-Wiener filter was
supplemented by the Kalman filter (just in time for its deployment in its first
natural field of application - control of manned spacecraft in real time). For a
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treatment of filtering and control. see e.g. Davis (1977). For a contemporary
view of time series, see e.g. Brockwell and Davis (1987) and the references
cited there.

Martingales have become ubiquitous since Doob – we live in the age
of martingales. They have been studied particularly intensively by D. L.
Burkholder, a colleague of Doob’s at Illinois. For a fine textbook account,
see Neveu (1975). For martingale central limit theory, see Hall and Heyde
(1980). Note that Doob covers central limit theory for the Markov-chain but
not the martingale case.

Diffusions in one dimension may be treated by a variety of methods. See
e.g. Itô and McKean (1965), Breiman (1968). In the multi-dimensional case,
there is essentially only one approach, the Stroock-Varadhan approach via
martingale problems (Stroock-Varadhan (1979)). For an excellent treatment
of much of the material duscussed above, see the two-volume work Rogers
and Williams (1994), (1987).

One of the main achievements of Paul-André Meyer (1934-2003) was to
develop (particularly following the work of Kunita and Watanabe of 1967 on
square-integrable martingales) the theory of stochastic integration; see e.g.
Meyer (1976). Meyer’s formulation involves predictable integrands and semi-
martingale integrators (semi-martingales in Meyer’s sense, not Doob’s!). For
textbook accounts of the related theories of stochastic integrals and stochastic
differential equations, see e.g. McKean (1969), Ikeda and Watanabe (1981),
Øksendal (1985), Protter (1990), Karatzas and Shreve (1987), Revuz and
Yor (1991). A different approach, via ‘rough paths’, has recently been given
by Lyons and Qian (2002).

One topic not covered in Doob (perhaps surprisingly, in view of Doob’s
background in complex analysis and potential theory) is the link between po-
tential theory and probability – in particular, with Markov processes. This
goes back to Kakutani (1944), who showed that classical (Newtonian) poten-
tial theory is intimately linked with (corresponds to, one might say) Brownian
motion. It was realised – most notably by Hunt, in a series of papers in 1957-
58 – that one could usefully associate potential theories to Markov processes,
and much work was done – by Brelot, Deny and others – on axiomatization
and generalization of potential theory. The book Probability and Potential
(Meyer (1966)) explored this link – and was later re-written in a five-volume
work of the same title by Dellacherie and Meyer. Soon after Meyer’s book,
Blumenthal and Getoor (1968) appeared – for long the standard work on
Markov processes and potential theory. Doob’s interest in potential theory
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resulted in his later – and even longer – book, Doob (1984), written in his
retirement.

The other principal achievement of Meyer and the Strasbourg (more gen-
erally, French) school has been their ‘general theory of processes’. A mono-
graph treatment of Markov process theory in the light of this general theory
of processes was given by Sharpe (1988). For an insight into the formidable
technical problems in this area, see the review Rogers (1989). One service
done by the book Protter (1990) was to make available for a wider audience –
including in particular applied workers – what the ‘probabilist in the street’
needs to know about the general theory of processes.

As a glance at the length of the list of books cited here underlines, there
will never be another Doob-the-book. If one person deserves to stand compar-
ison with Doob-the-man during the half-century discussed here, that person
must be Meyer. It is perhaps fair to remark that while the broad thrust of
Meyer’s work began with Markov processes, it changed towards martingales
during his lifetime, and it is here, it seems, that his impact will be deepest.

4 Post-Doob: the legacy to applied probabil-

ity

The viewpoint and results of martingale theory are perhaps the most im-
portant of the legacies of Doob’s book. Their influence is all around us. In
mainstream probability theory, see e.g. Rogers & Williams (1994), (1987);
in limit theorems, see Ethier & Kurtz (1986) (martingale problems), Jacod
& Shiryaev (1987) (convergence of semi-martingale characteristics). In anal-
ysis, see Durrett (1984). In statistics, see e.g. the book of Heyde (1997)
on quasi-likelihood, and the extensive literature on sequential analysis. A
further area of statistics where martingale methods are crucial is survival
analysis and event-history data; see e.g. Andersen et al. (1993).

Within applied probability, one area where martingales have been particu-
larly crucial is queues. Here, interest centres on random discrete times, when
customers arrive and depart, etc., and the relevant theory – ‘Palm-martingale
calculus’ – is a discrete, Poisson-based counterpart to the (harder, better-
known and earlier) continuous, Gaussian-based Itô calculus. For textbook
expositions, see e.g. Brémaud (1981), Point processes and queues: Martin-
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gale dynamics, Baccelli & Brémaud (1994), Elements of queueing theory:
Palm-martingale calculus and stochastic recurrences, and Brémaud (1999).

Rather in the same vein is applications to point processes. Here the main
theme is intensity – the propensity of what can happen, to happen; typical
happenings here are such things as earthquakes and volcanic eruptions. For
background, see e.g. Daley & Vere-Jones (1988), esp. Ch. 12-13.

Branching processes provide another rich field of application. See for ex-
ample Athreya & Ney (1972), Jagers (1975), Lynch (2000) and references
there, and many papers by J. D. Biggins. Similarly for other population
models such as birth-and-death processes, and within mathematical biology
more generally.

The theory of collective risk has been central in applied probability since
the early work of Cramér. Random-walk methods have long been used here;
see e.g. Feller Volume 2. Martingale methods were fruitfully introduced into
the area of insurance and actuarial mathematics in the 1970s by H. U. Ger-
ber; see e.g. Gerber (1986).

Finally, following the work of Black and Scholes in 1973, the field of
mathematical finance has been transformed by the introduction of relevant
stochastic methods. First, Itô calculus was introduced into the field by
Merton as early as 1973. Second, martingale methods were introduced by
Harrison & Pliska (1981). The crux of the subject is equivalent martingale
measures: probability measures equivalent to the original one under which
discounted prices become martingales. For background and references, we
refer to Bingham & Kiesel (1998/2004).

5 Postscript

The name Doob is so famous, and so unusual, that its origins may be worth
recording here, for historical interest. Doob’s father was Czech, and ‘dub’ in
Czech means ‘oak’. (Readers may recall Alexander Dubcek and the Prague
Spring of 1968. ‘Dubcek’ means ‘little oak’ – to the delight of the cartoonists
of that time.) When Doob’s father, then Dub, emigrated to the USA, he
got sick of being called ‘dub’, and changed his name to Doob. To change
the spelling to preserve the pronunciation is rare. Usually, the spelling is
preserved and the pronunciation changed (thus the distinguished probabilist
and statistician Jack Wolfowitz – father of the Deputy Secretary of Defense
– chose to be ‘wolf-oh-wits’; similarly for Wiener, etc.).
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