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TAUBERIAN THEOREMS AND LARGE DEVIATIONS

N. H. BINGHAM

To Cindy Greenwood, on her seventieth birthday

Abstract. The link between Tauberian theorems and large deviations is surveyed, with
particular reference to regular variation.

1. Introduction.
To this author, limit theorems in probability theory have always been irresistibly

attractive, as well as centrally important. As Kolmogorov put it in his introduction to
Bernoulli’s book, ”The cognitive value of probability theory lies in the establishment of
strict regularities resulting from the combined effects of mass random phenomena. The
very notion of mathematical probability would have been fruitless if it were not realized
as the frequency of a certain result under repeated experimentation. That is why the
works of Pascal and Fermat can be viewed as only the prehistory of probability, while
its true history begins with J. Bernoulli’s law of large numbers” ([Kol]; [Shir], 874-5).
The weak law of large numbers gives us a limiting frequency in the presence of a mean;
its refinement, the central limit theorem, gives us a limiting distribution in the further
presence of a variance. Both phenomena can occur more generally. The necessary and
sufficient condition is known in each case, and in each case involves regular variation (for
details see e.g. [Bin2]). Thus probabilists are led inescapably towards regular variation (for
which see e.g. [BGT], particularly Chapter 8). Furthermore, the role of the characteristic
function, or Fourier transform, in translating averaging, or addition of independent random
variables, into multiplication rather than convolution leads one to work with transforms
rather than with distributions. But one needs eventually to translate the information thus
obtained from transform to distribution language. This is the role of Tauberian theory. For
a magisterial treatment of the whole subject, see [Kor]; for regular variation, see Chapter
IV there, or [BGT] Chapter 4.

This long chapter (64 pages), entitled Abelian and Tauberian theorems, originally
covered Mercerian theorems also. It is a pleasure to record a personal debt to Cindy
Greenwood here. Only after repeated and urgent pleas from Cindy did I detach the
Mercerian component, which became Chapter 5 (25 pages – with Chapter V in [Pitt],
incidentally, the only textbook chapters I know, though see also [Kor] IV.13, 14, [PalWie]
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IV.18). She pointed out with remorseless clarity that separated, the Mercerian material
would be impossible to miss, but unseparated risked sinking without trace. I wish I had
had the courage of her convictions and split the Abelian and Tauberian parts also.

Our starting point here is the section immediately before the Mercerian part,
on Tauberian theorems of exponential type ([BGT], §4.12). Here our treatment closely
followed that of Kasahara [Kas] (leading to three Tauberian theorems, named after de
Bruijn, Kohlbecker and Kasahara). At that time, neither Yuji Kasahara nor I realized the
link between this area and large deviations. This link has been subsequently elaborated, by
Kasahara and Kosugi; see [Kos1], [Kos2], [KasKos1], [KasKos2]. It involves convex analysis
and the Gibbs variational principle; for background, see [Wig], [Geor], [Ell], [DupEll]. The
theme is exemplified by the relation displayed on the cover of [DupEll]:

− 1
n

log
∫

x

e−nhdθn → inf
x∈X

{h(x) + I(x)}

(I is the rate function).
For later use, we record here our notation for the Fenchel dual (or Legendre-Fenchel

dual, or conjugate) of a convex function f :

f∗(x) := supy{xy − f(y)}

([Rock] Sections 7, 12). Then f∗ is convex, proper (< +∞ somewhere, > −∞ everywhere)
iff f is proper; the closure (greatest lower semi-continuous minorant if f is nowhere −∞,
identically −∞ otherwise) cl f has the same dual as f , f∗ is closed (equal to its closure),
and f∗∗ = cl f .

We shall only be concerned here with the case when all moments µn := E[Xn] of
X are finite (in this case the moment-generating function (mgf) M(t) :=

∑∞
n=0 µntn/n! is

defined, though its radius of convergence may be zero). For X non-negative (which we may
suppose here without loss) the non-integer moments are then finite also, and one has the
option of working with the Mellin transform (or Mellin-Stieltjes transform) F(s) := E[Xs]
(for s > 0 in the first instance, but we may continue analytically to Res > 0). Just as
the cf is the natural tool for handling sums of independent random variables, the Mellin
transform is the natural tool for handling products. For a systematic treatment, see [Zol];
for some applications, see [BinTeu]. We return to Mellin transforms in Section 4.

2. Entire characteristic function
We know from the work of Paley and Wiener [PalWie] that the proper setting for

the Fourier transform is the complex plane (or domain, in their terminology). Thus the
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traditional ‘i’ in the definition φ(t) :=
∫

eitxdF (x) of the characteristic function (cf) φ of
a probability distribution F is merely conventional, and may be omitted if we intend to
let the argument t take complex values. One then needs to distinguish cases according
to the nature of the cf, or mgf, as a function of a complex variable. It may be entire,
analytic but not entire or non-analytic, according as the radius of convergence is infinite,
positive and finite, or zero. We turn now to the entire case, for which see e.g. [Luk1], and
[BGT] Section 7.6 (Levin-Pfluger theory: functions of completely regular growth). For the
analytic case, see [Luk1] Ch. 7, [Luk2] Ch. 7. For the non-analytic case, see Section 3
below.

An entire cf (of a positive random variable X, with distribution function F ) has
order ρ ∈ [1,∞) ([Luk1], Th. 7.1.3). If for large t log E(etX)/tρ has liminf a and limsup
b, with 0 < a ≤ b < ∞, we say that X has very regular growth ([Val] II.7). Davies [Dav]
shows that in this case one can find upper and lower bounds on

− log P (X > x)/xρ/(ρ−1),

in terms of a and b. If the limit exists, and a = b = α, say, then we say that X has
completely regular growth. The Levin-Pfluger theory of [Lev], [BGT] Section 7.6 then
applies, and − log P (X > x)/xρ/(ρ−1) is regularly varying with index p = ρ/(ρ− 1).

This last result is extended to the case of general regular variation by Geluk [Gel1].
Writing Rp for the class of functions regularly varying with index p, he links

lim inf
x→∞

− log P (X > x)/φ(x) = 1

for φ ∈ Rp with
lim sup

x→∞
[E(Xn)]1/nψ(n)/n = q1/qe−1/p,

where p > 1, q > 1 are conjugate (in the usual sense of Lp spaces) and ψ is increasing and
in R1/q. Then

ψ→(x) ∼ φ∗(x),

where one has the inverse function of ψ on the left and the Fenchel dual of φ on the right,
so both sides are in Rq (see e.g. [BGT] Section 1.8.4).
Example: The Mittag-Leffler distribution.

For α ∈ (0, 1), the Mittag-Leffler law with index (or parameter) α has mgf

MLα(t) :=
∞∑

n=0

tn/Γ(1 + nα);
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for uses in probability theory, see e.g. [Bin1], [Fel] XIII.8, [BGT] Section 8.11. Thus

µn = n!/Γ(1 + nα) = Γ(n)/(αΓ(nα)),

and by Stirling’s formula one finds, in the notation above,

ψ(x) = xα, ψ→(x) ∼ φ∗(x) ∼ x1/α,

and so
− log P (X > x) ∼ φ(x) ∼ (1− α)αα/(1−α)x1/(1−α).

This result is derived twice in [BinTeu], p. 350, 352, and again in [BGT], Th. 8.1.12, as
an instance of Kasahara’s Tauberian theorem. For the mgf itself, one has

MLα(t) ∼ exp{t1/α}/α

(Cartwright [Car], p. 50). The Mittag-Leffler law of index α is closely connected to the
stable subordinator (increasing stable process) of index α, and the result above translates
into a tail estimate at zero for X = X(1) in the stable subordinator:

− log P (X < x) ∼ (1− α)αα/(1−α)/xα/(1−α) (x ↓ 0);

see [BinTeu] 349-350, [BGT] Section 8.3.4.
The limiting case p = 1 relates to entire cfs of infinite order. This is a boundary

case of the above, and may be handled by using second-order theory of regular variation
(de Haan theory: [BGT] Chapter 3). Let φ be a positive function with φ(t)/t → ∞ as
t →∞, and similarly for a. Suppose the second-order condition

φ(tx)− xφ(t)
ta(t)

→ x log x (t →∞) ∀x > 0

holds. Then if the tail function is everywhere positive and the cf is entire, the following
are equivalent:

lim inf
x→∞

− log P (|X| > x)− φ(x)
xa(x)

= 0

for some φ, a as above,

lim inf
n→∞

[E(|X|n)]−1/nn!1/n − ψ(n)
α(n)

= 0

for some ψ and some α ∈ Π (the de Haan class Π; see e.g. [BGT] Ch. 3). Then

φ∗(x) ∼ (ex)−1

∫ x

0

ψ→(u)du
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and α ∼ a. We refer to Geluk [Gel2], Geluk, de Haan and Stadtmüller [GdHS] for details.

3. Non-analytic characteristic function
A cf is defined in the first instance on a line in the complex plane (the real axis if

one includes the ‘i’ in the definition, the imaginary axis if, as here, one does not), but can
be continued analytically to a strip in the complex plane (which may be the whole plane,
a half-plane, a strip of positive finite width or the imaginary axis). A cf is analytic iff all
moments µn are finite, and lim supn→∞[|µn|/n!]1/n = 1/R is finite (R is then the radius of
convergence of the Taylor series of the cf, or mgf). Equivalently, it is analytic iff for some
R > 0 the tail function T (x) := P (|X| > x) is O(e−rx) for all r < R, and then the strip
of regularity contains the strip | Im z| < R ([Luk1], Th. 7.2.1). We proceed to consider
results analogous to those above, but with the tails heavy enough to cause non-analyticity
– that is, with the log-tail decaying more slowly than a multiple of x.

A recent result of this kind, which may serve as a prototype, is due to König and
Mörters ([KoMo], Lemma 2.3): for X non-negative, p > 1 and c real,

lim
n→∞

1
n

log E[Xn/(n!)p] = −c

implies
lim

x→∞
x−1/p log P (X > x) = −pec/p,

with a similar implication with limsup in place of limit. (In their setting, p = 1, 2, . . ., and
they consider the intersection of p independent Brownian motions in d dimensions. We
exclude here the case p = 1, which falls under analyticity above, and is not relevant to
their intersection problem, but there is no need here to restrict to p integer.) Their proof
is simple, using only Markov’s inequality, Stirling’s formula and reduction of the limit to
a suitable sequence. On the other hand, the setting of their main results makes heavy use
of large-deviation theory.

4. Complements
1. Laplace’s method. The essence of Tauberian theorems of exponential type, and of large
deviations, is that growth is dominated by behaviour in the neighbourhood of the max-
imum. This is simply a reflection of how overwhelmingly rapid exponential growth (or
decay) is. The prototype in analysis is Laplace’s method (for which see e.g. de Bruijn
[dBr]), which goes back to Laplace’s Théorie analytique des probabilités of 1820 and of
which the most telling instance is Stirling’s formula of 1730. Its applicability in statis-
tical mechanics rests ultimately on the enormous magnitude of Avogadro’s constant, c.
6× 1023.
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2. The Wiman-Valiron method. In the discrete analogue of Laplace’s method (as in
[BinTeu], 346), one examines the growth of an entire function (an entire cf in our case)
by localizing at the term of maximum modulus in its Taylor series. For surveys of the
Wiman-Valiron method, see Hayman [Hay], Fenton [Fen].
3. Esscher transforms. For F a law with mgf M(t), the law Ft(dx) := etxdF (x)/M(t) is
called the associated law by Feller [Fel], XVI.7, or the exponentially tilted law. Its use goes
back to F. Esscher in 1932, and later to Cramér in 1938; it is accordingly called the Esscher
transform. It is widely used in ruin theory and insurance and actuarial mathematics; see
e.g. Mikosch [Mik], Section 4.2. In brief, one may use it to change at will the point in
whose neighbourhood one wishes to probe the asymptotic behaviour.
4. Mellin transforms. As mentioned earlier, with all moments finite as here, one may
consider the Mellin transform F(s) := E[Xs] of X, and seek to link its behaviour for large
s with the tail behaviour of X. One early example is the work of Wagner [Wag], also
considered in [BinTeu] (the beginning of my collaboration with Jef Teugels, which led to
[BGT], the origin of Fenchel duality in regular variation, and one source, together with
[BGdH], of smooth variation – see [BGT] Section 1.8).
5. Branching processes. Tauberian theorems of exponential type are also useful in branch-
ing processes; see e.g. [BigBin] (near-constancy phenomena). Again, the theme is that
when populations grow, they grow so rapidly that the contribution near the maximum is
all that counts.
6. Random potentials. We close by mentioning the wealth of related literature on ran-
dom Schödinger operators in models of disordered media, etc. For a recent survey, with
many references, see [LMW]. As Cindy says, all good mathematicians are also interested
in physics.

Acknowledgement. I thank Peter Mörters for rekindling my interest in this subject.
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