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HEROIC PERIODS AND THE LONG PAUSE

N. H. BINGHAM

1. Introduction.
It is eighteen years now since the appearance of Stephen Stigler’s book

The History of Statistics: The Measurement of Uncertainty before 1900.
Stigler’s book (Stigler (1986)) breaks into three parts. Part One – The De-
velopment of Mathematical Statistics in Astronomy and Geodesy before 1827
– focuses on the introduction of the method of least squares in 1805 by Legen-
dre (1752-1833) and Gauss and its treatment by Laplace – the ‘Gauss-Laplace
synthesis – leading up to his Thórie Analytique des Probabilités (TAP be-
low) in its editions from 1812 on. It ends with the death of Laplace, and
least squares and error analysis firmly established in astronomy and related
sciences. Part Two – The Struggle to Extend a Calculus of Probabilities
to the Social Sciences – traces events over the next half-century or so, with
particular reference to the work of Quetelet, Poisson, Bienaymé and Lexis in
the social sciences. Part Three – A Breakthrough in Studies of Heredity – fo-
cuses on the period 1885-1900 of the English School, of Galton, Pearson and
Edgeworth, beginning with Sir Francis Galton’s classic study of the heredity
of human height. Galton’s work gave us the terminology and concepts of
regression and correlation, and – combined with the Gauss-Laplace synthesis
of TAP, and developed further by the capable mathematical hands of Edge-
worth and others – led to the familiar Linear Model of modern Statistics.

On page 2 of his book, Stigler addresses the nub of the matter, in a
characteristically pithy and amusing way. ‘For example, elementary statis-
tics texts tell us that the method of least squares was first discovered about
1805. ... We also read that Sir Francis Galton discovered regression about
1885, in studies of heredity. Already we have a puzzle – a modern course
in regression analysis is concerned almost entirely with the method of least
squares and its variations. How could the core of such a course date from
both 1805 and 1885? Is there more than one way a sum of squared deviations
can be made small?’

Our aim here is to return to Stigler’s puzzle, and complement his book-
length treatment from another point of view. In the compass of some ten
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pages, and from the point of view of the history of mathematics in general
and of probability and statistics in particular, we discuss this same puzzle
and advance some thoughts towards its possible resolution.

2. Heroic Periods - Before Least Squares.
The first great puzzle that the history of probability and statistics presents

us with is how mankind could have been exposed to chance events from time
immemorial, and been in possession of powerful mathematical tools from the
birth of the modern period onwards, with so little progress on the math-
ematics of chance for so long. The pre-history of our subject is discussed
at monograph length in David’s book Games, Gods and Gambling (David
(1962)). Certainly there are grounds for thinking that the pre-eminent role
played in the thinking of our forefathers by matters of religion, fate and the
like inhibited the application of rational, mathematical or scientific thinking
to matters of chance.

The history proper of probability and statistics is usually taken as begin-
ning with the Pascal-Fermat correspondence of 1654 – the 350th anniversary
of which is aptly commemorated by this Journée Bru. After contributions
by mathematicians of the calibre of Huygens, the first ‘immortal book’ was
the posthumous Ars Conjectandi (AC) of Jacob Bernoulli (1654-1705) in
1713 (‘Bernoulli’s theorem’ – the weak law of large numbers for Bernoulli
trials). The second ‘immortal book’ was The Doctrine of Chances (DC) by
Abraham de Moivre (1667-1754), in editions of 1718, 1738 and 1756. The
normal distribution, and the Bernoulli case of the central limit theorem, date
from de Moivre’s note Approximatio ... of 1733, and appear in the 1738 edi-
tion of DC. Leading contributors from the rest of the eighteenth century were
from Daniel Bernoulli (1700-1782), Thomas Bayes (1702-1761; Essay of 1763,
posthumously) and Condorcet (1743-1794; Essai of 1785).

By this time, the first stirrings that led to least squares were being felt.
One major precursor was the work of Roger Boscovich (1711-1787), who –
motivated by problems of the figure of the earth – wrote on error analysis
and the fitting of a linear relationship in 1760 (for background, see Stigler
(1984)). Another was the work of Tobias Mayer on the libration of the
moon (Stigler (1986), Ch. 1). Laplace also worked on error analysis in the
late 1700s, motivated by problems in celestial mechanics. From this period
date his use of the symmetric exponential distribution (density exp{−|x|}/2)
as an error curve, and the method of least absolute deviations (LAD). This
method has enjoyed a recent revival in statistics. Laplace’s magisterial Traité
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de mécanique céleste (MC) appeared (Volumes 1-4) from 1799 to 1805.

3. The First Heroic Period: Least Squares.
The first Heroic Period, however, concerns the introduction and absorp-

tion of the method of least squares. This first saw the light of day in 1805 in
a supplement to Legendre’s book Nouvelle méthodes pour la determination
des orbites des comètes. This was followed in 1809 by Gauss in his Theoria
motus corporum coelestium in sectionibus conicis solem ambientem (TM).
Here Gauss made his famous remark ‘On the other hand, our principle (prin-
cipium nostrum), which we have made use of since the year 1795, has lately
been published by Legendre ...’. Of the resulting priority dispute, we shall
merely refer to Seal (1967), Plackett (1972) and Stigler (1977) for histor-
ical discussion, and point out that, in the academic and scholarly climate
of those times, modern conventions regarding the supremacy of publication
dates, and the need to acquaint one’s contemporaries with the fruits of one’s
labours as they are harvested, had not yet become established.

Gauss’ first work here, instead of centring on the minimization of a sum
of squares (or, what is equivalent in a model with normal errors, maximiza-
tion of the relevant likelihood function), assumes that the best estimate of
the mean of n readings is their average (or sample mean), and uses Bayes’
Theorem to derive the functional form of the normal law. Because of this,
the normal law is often called the Gaussian law (in modern stochastic process
theory, the corresponding term Gaussian process is always used). However,
as Laplace had used the normal law earlier (as of course had de Moivre), some
writers – particularly in the French school – call it the Laplace or Laplace-
Gauss law.

Gauss returned to least squares in his long paper Theoria combinationis
observationum erroribus minimis obnoxiae (TC), Part I (1812), II (1823),
Supplement, 1826, in the Proceedings of the Royal Society of Göttingen.
Here his earlier appeals to the ‘principle of the mean’ and Bayes’ Theorem
are avoided. Instead, he interprets least squares in terms of minimizing a loss,
using a quadratic loss function, an approach fully developed in modern Deci-
sion Theory. He restricted attention to linear estimators which are consistent
(would be exact if there were no error – this is the same as unbiasedness in the
normal case, but may not be so in non-normal situations). For background
and discussion here, see Stigler (1975), Sprott (1978). Gauss also obtained
the minimum-variance, or greatest-precision, property of least-squares es-
timators, now generally known as the Gauss-Markov theorem. (This is a

3



misnomer – see Seal (1967) for the background on Neyman’s misreading of
Markov’s book. But such mistakes are thematic here, as instances of Stigler’s
Law of Eponomy – that everything becomes known by the wrong name; see
Stigler (1980).)

We turn now to the work of Laplace (Pierre Simon de Laplace, 1749-
1827). Laplace’s early work in probability and error analysis, culminating
in his MC, has been touched on above. Here we come to his principal con-
tribution, his Théorie Analytique des Probabilités (TAP) of 1812 (2nd ed.
1814; 3rd ed. 1820). From the last page of the Introduction (cvi pages):
‘On voit par cette Essai, que la thorie des probabilités n’est au fond, que
le bon sens réduit au calcul ...’ (Todhunter (1865), p. 504). The text is
divided into Livre I: Du calcul des functions génératrices (p. 1-177), Livre
II: Théorie générale des probabilités (p. 179-461), Additions (p. 462-484).
Augustus De Morgan comments on Laplace: ‘... his TAP is by very much the
most difficult mathematical work we have ever met with’ (Todhunter (1865),
p. 539). Ch. IV: De la probabilité des erreurs des résultants moyens d’un
grand nombre d’observations, et des résultants moyens le plus avantageux
(p. 304-348). ‘This chapter is the most important in Laplace’s work, and
perhaps the most difficult; it contains the remarkable theory which is called
the method of least squares (Todhunter (1865), p. 560).

Laplace has been called the French Newton. He was by far the greatest
of the mathematicians considered so far, save only for Gauss, and his TAP
was a milestone in probability theory of enormous importance. Some indi-
cation of this is given by the title of Todhunter’s book of 1865 – A history
of the mathematical theory of probability from the time of Pascal to that
of Laplace – and the fact that Todhunter’s last chapter (Ch. XX: Laplace)
occupies pages 464-613 in his book of 624 pages. Among the many tributes
to Laplace, we mention a description of TAP (quoted by Todhunter, p. 612)
‘to be one of the most splendid works of the greatest mathematicians of the
past age’. And from Poisson’s obituary of Laplace (Comptes Rendus, quoted
by Todhunter, p. 613): ‘Sans doute, Laplace s’est montré un homme de génie
dans la mécanique céleste ... Mais on peut dire que c’est encore plutôt dans
le calcul des probabilités qu’il a été un grand géomètre ...’.

Following Gauss’ TM of 1809, there were now two ways in which the nor-
mal law entered the theory:
(a) via the Central Limit Theorem (in modern terminology), specifically its
special case for Bernoulli trials, the de Moivre - Laplace theorem,
(b) through the link with the method of least squares.
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Laplace recognised the importance of (a) and (b) together in a Supplement
added to a paper of his in 1810, and incorporated this ‘Gauss-Laplace syn-
thesis’ into his TAP of 1812.

A detailed account of the Gauss-Laplace synthesis (Stigler’s telling phrase)
is contained in Chapter 4 of Stigler (1986).

4. The Mid-Nineteenth Century: Heroic Period of Mathematics.
We turn now from our specific concern – the history of probability and

statistics – to consider the history of mathematics in general. This is partly
by way of setting context, partly in order to contrast the very different situ-
ations in mathematics at large and in probability and statistics during this
period.

The turn of the nineteenth century witnessed the emergence of Gauss
(1777-1855), arguably the greatest mathematician who ever lived and cer-
tainly among the top three (with Newton and Archimedes). The first years
of the century saw the epoch-making introduction of least squares, culmi-
nating in the Gauss-Laplace synthesis. The Napoleonic era saw, as well as
extensive blood-letting and political upheaval, much constructive work in the
sciences and the educational system. Thus Napoleon acted as a major patron
of the sciences - honouring such figures as Laplace, Fourier and Monge, for
example. He imposed the metric system on those parts of continental Europe
he controlled. He founded the French Grandes Ecoles, including the Ecole
Polytéchnique at which Monge taught. With these new institutions, and
the mathematical legacy of the great French mathematicians of the time –
Lagrange, Laplace, Legendre, Fourier and their contemporaries – new math-
ematical textbooks appeared, and helped to confirm the place of France as
the leading mathematical country of the time.

The stage was set for a heroic period in mathematics unequalled since
the birth of the modern scientific age with Newton and Leibniz. It would
take a book to do any sort of justice to this; we content ourselves here with
the briefest of notes on eight major fields. Our aim is merely to substantiate
that this period does indeed dominate the undergraduate curriculum, and so
was indeed a heroic period for mathematics.
Analysis. In analysis, Cauchy (1789-1857) transformed the field by his de-
velopment of complex function theory, complex integration and the calculus
of residues. Rigorous analysis gradually established itself, through the work
of Bolzano (1781-1848), in his 1817 book Rein analytische Beweis ..., and
leading up to the work of Weierstrass (1815-1897), most influential during
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his own lifetime through his lectures at the University of Berlin.
Algebra. The work of Abel (1802-1829) and Galois (1811-1832) gave math-
ematics the group concept. The work of Cayley (1821-1895) and Sylvester
(1814-1897) in the 1850s introduced matrices, and led to linear algebra.
Geometry. The work of Poncelet (1788-1867) systematized the projective ge-
ometry that was created earlier by Desargues. The non-Euclidean geometry
of Lobachevskii (1793-1856) and Bolyai (1802-1860) in the 1830s changed the
conceptual framework with which one thinks about space, and demonstrated
a dramatic break with habits of thought established over two thousand years.
No clearer illustration of the movement to the modern world could be given
in mathematics.
Number Theory. The work of Riemann (1826-1866) of 1859 on analytic num-
ber theory applied the complex analysis of Cauchy to problems on the dis-
tribution of primes, and gave us the Riemann Hypothesis still open today.
The new algebra led, in the hands of Kronecker (1823-1891), Kummer (1810-
1893) and Dedekind (1831-1916), to the study of ideals and algebraic number
fields.
Mechanics. The Newtonian mechanics of the Principia (1687) led on to the
Lagrangian mechanics of the Mécanique Analytique (1788) and to Hamilto-
nian mechanics (1834). One spectacular triumph of Newtonian mechanics
was its use in the discovery by Adams and Leverrier of the planet Neptune
in 1845, from perturbations in the motion of Uranus.
Electromagnetism. The modern age in electromagnetism might be dated from
the essay of 1828 of George Green (1793-1841), An essay on the application
of mathematical analysis to the theories of electricity and magnetism – it-
self heavily influenced by the work of the French school, of Laplace, Poisson
and others. The discoveries by Michael Faraday (1791-1867) of electromag-
netic induction in 1831, and by James Clerk Maxwell (1831-1879) of the
electromagnetic theory of light in 1864, were perhaps the two greatest single
scientific advances of the nineteenth century.
Statistical Mechanics. The field of statistical mechanics rests principally on
the work of three workers, Maxwell (above), Ludwig Boltzmann (1844-1906)
and Josiah Willard Gibbs (1839-1903). This marriage of mechanics with sta-
tistical physics, together with the closely related field of thermodynamics, is
still the basis of much science and was a precursor to the quantum theory of
the next century.
Partial Differential Equations (PDE). Much of classical physics can be ex-
pressed in the language of PDEs in general, and second-order linear PDEs
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with constant coefficients in particular. The classical trichotomy into elliptic
(prototype: Laplace’s equation), parabolic (prototype: the heat equation)
and hyperbolic (prototype: the wave equation), and the development of the
associated machinery of eigenfunction expansions, special-function theory
and the like, dates from the mid-nineteenth century.

5. The Mid-Nineteenth Century: Heroic Period in Engineering, in
Industry, etc.

The beginning of the nineteenth century saw the end of the old Europe
of the Middle Ages, propelled into upheaval by political events – the French
Revolution, the Napoleonic wars, etc. Even 1825, say, witnessed the old
world recovering from this turmoil. But by fifty years later, we see instead
an early form of the recognisably modern world of today. The Industrial Rev-
olution had burgeoned. Railways had begun; so had deep coal mining (to
provide fuel for the new steam age, as well as for domestic heating); so had
steel smelting. The great works of Victorian engineering that still survive
had begun: railway and road bridges of new types and unprecedented size,
steamships, tunnels through mountains and under rivers, public provision of
such necessities of urban life as water and sewerage supply, the first skyscrap-
ers, etc. All this was made possible by the application, and absorption into
manufacturing, industrial and commercial life, of the first century and a half
or so of the modern scientific and mathematical world. It is often said, and
rightly so, that this great age of engineering was the age of Newtonian science
applied.

During this time, we also see profound changes in institutions. The mod-
ern university emerged – new metropolises such as London acquiring their
own universities, and the mediaeval seats of learning such as Oxford and
Cambridge adapting to changed circumstances by radical revision of curric-
ula and of access. The modern institutions of capitalism – the stock exchange,
the limited liability company, etc. – emerged. The great industrial nations
rushed to colonize the world (leading to the cataclysm of World War One in
due course). These changes led to political repercussions – the emergence of
the modern left-right divide in politics, etc.

By the last quarter of the century, we see a world as like that of a century
later as of half a century earlier. We see a world in which universal suffrage
is accomplished or coming, in which mass education is established, and in
which the role of science and technology is recognised as decisive. We see
a social contract in which governments recognise a duty to provide for their
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electorates, both for electoral survival and out of recognition of the need to
nurture and develop the nation’s human capital in the new and dynamic
conditions. In short: we see a new world, in which everything has changed
beyond recognition in half a century.

6. Probability and Statistics: the Long Pause.
Conspicuous by its failure to move with the hectic pace of change of these

times is the field of probability and statistics. To return to Stigler’s telling
remark quoted earlier, we find this field in 1885 much as we left it in 1805.

Stigler devotes Part Two of his book – The Struggle to Extend a Calcu-
lus of Probabilities to the Social Sciences – to answering the question of why
this period, so fertile elsewhere, should have been so comparatively barren
here. He traces the work of Quetelet (1796-1874), his application of statistics
to measurements of human heights and the like, and social questions con-
cerning conviction rates etc., and his tendency to fit a normal distribution
to any data set to hand (‘Quetelismus’). He considers the work of Poisson
(1781-1840), his social studies – Recherches sur la probabilité des jugements
en matière criminelle et en matière civile, 1837 – and the origin of the Poisson
distribution. The work of Bienaymé (1796-1878) is also briefly considered;
see Heyde and Seneta (1972) for a book-length treatment.

Interesting as these contributions and their authors are, these develop-
ments hardly compare, either with those in mathematics during this period
or with those in the broader spheres of engineering, industry and commerce
or politics.

Meanwhile, the birth of the splendid Russian school of probability that
was to prove so decisive in the next century had taken place. Probability
was first studied in Russia at the Academy of Saint Petersburg (the capital
in Tsarist days) by Euler and Daniel Bernoulli in the 18th century. The pre-
eminence of the Russian school may be traced to the work of P. L. Chebyshev
(or Tchebychev, to give just one other transliteration) (1821-1894). Cheby-
shev gave what is now called Chebyshev’s inequality in 1867 (J. Math. Pures
Appl. 88, 177-184) – although this result was anticipated by Bienaymé in
1853. Later, he introduced the method of moments (1890-91). His most dis-
tinguished pupil was A. A. Markov (1856-1922), who succeeded him in 1883.
Markov’s 1912 book Wahrscheinlichkeitsrechnung gives us the concept of a
Markov chain, and brings us to within sight of the modern age.

7. Our Second Heroic Period - the English School.
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Gauss had most of the essentials for the Linear Model, the core material
for modern statistics. Key ideas that he lacked were (a) regression and cor-
relation, (b) exact sampling distributions (χ2, t, F etc.)

One of the key components – the bivariate normal distribution – was
studied in a long paper by A. Bravais (1846). But this still did not lead
to the required mathematical breakthrough. A modern treatment uses lin-
ear algebra and matrices. The mathematics for this did not then exist – as
above, it was introduced in the next decade by Cayley and Sylvester; this
may partly explain the delay.

Gauss, Laplace and Legendre were all motivated by the needs of celes-
tial mechanics. The area which most stimulated further progress was biology.
This had been revolutionized by Darwin’s theory of natural selection (Charles
Darwin (1809-1882); The Origin of Species by Natural Selection, 1859). The
pioneer of the second heroic period in this account was the unlikely figure of
Sir Francis Galton (1822-1911). Galton ‘... latterly devoted himself to hered-
ity, founding and endowing the study of eugenics ...’ (Chambers’ Biograph-
ical Dictionary). Galton exemplifies the supreme importance – in science,
mathematics or any other field of enquiry – of asking the right questions.
His first work relevant here was his book Hereditary Genius: An Enquiry
into its Laws and Consequences of 1869. Motivated by an attempt to intro-
duce quantitative methods into the study of heredity (this after Mendelian
genetics was initiated – by Gregor Mendel (1822-1884) in 1865, but before
it was rediscovered and widely noticed in 1900; see Mendel (1965)), Galton
undertook a statistical study of the heights of adult males, say (the ‘re-
sponse variable’, y - actually, Galton used females also, but adjusted their
heights to allow for gender) plotted against the average of the father’s and
mother’s heights (mid-parental height – the ‘predictor variable’, x). His data
set consisted of 928 adult offspring, born of 205 mid-parents. On plotting a
histogram, Galton noticed empirically that the contours seemed elliptical in
shape. Galton was himself a weak mathematician, but he obtained the help
of a Cambridge mathematician, J. Hamilton Dickson, who was able to apply
to Galton’s study the relevant mathematics, that of the bivariate normal dis-
tribution (already studied by Bravais in 1846). Galton’s study of 1885 was
published in 1886. He concluded that, of every inch of mid-parental height
above (or below) the mean, on average ρ inches were transmitted to the next
generation, for some constant ρ between 0 and 1. Continuing in this way,
after n generations, on average ρn inches are passed on. Since this tends
to 0 as n increases, this led Galton to the – to him discouraging, in view
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of his fascination with hereditary genius – conclusion that height (and by
analogy, hereditary genius, intelligence etc.) reverts towards the mean. The
coefficient ρ above – visibly a measure of linkage, or association, between x
and y – Galton called the coefficient of co-relation. These Galtonian con-
cepts of reversion and co-relation have been transmitted to us as regression
and correlation. His work was published at book length in Natural Inheri-
tance (1889). The histogram and elliptical plot from Galton’s original data
are reproduced in Stigler (1986), p. 286-287, and a full account of Galton’s
work, its motivation and historical context in Stigler (1986), Chapter 8 - The
English Breakthrough: Galton.

Galton’s work provided the stimulus for that of Karl Pearson (1857-1936).
Pearson became Professor of Applied Mathematics at University College,
London in 1884, and Galton Professor of Eugenics there in 1911. (One notes
in passing the enthusiasm of progressives and scholars of these and later times
for the term eugenics, long before it sank beneath the weight of opprobrium
that attached to it following Nazi times.) Pearson wrote his influential The
Grammar of Science – a textbook on statistics – in 1892 (I cannot resist not-
ing in passing the parallel between Pearson’s description of statistics in these
terms and that of a genius of contemporary statistics, Persi Diaconis, who
describes statistics as the physics of numbers). Pearson was much influenced
by W. F. R. Weldon (1860-1906), Jodrell Professor of Zoology at University
College, London (1890-1900) and founder-editor of the journal Biometrika in
1900. Pearson was noted for his introduction of the Pearson family of den-
sity curves of various types, which he used to describe characteristics of the
shapes of shell-fish obtained by Weldon from the Bay of Naples. Pearson re-
discovered and named the chi-square distribution found earlier by Helmert in
1876), and used it as the basis for his chi-square goodness-of-fit test of 1900
– arguably, the beginning of modern statistics. His historical contributions
include his Life of Galton (1914, 1930) and his The History of Statistics in
the 17th and 18th Centuries (1978).

The next major figure of this period was F. Y. Edgeworth (1845-1926),
who was born in Ireland, studied in Dublin and Oxford, and taught at King’s
College, London. Edgeworth worked on statistics from 1885 on, influenced
in particular by Galton and Pearson. It is to Edgeworth, in two papers of
1892 and 1893, that the basic distribution theory of the Multivariate Normal
distribution, the theoretical underpinning of modern Multivariate Analysis,
is due. A full account of Edgeworth’s work in statistics, and its importance,
is given in Stigler (1986), Chapter 9. Note that by this time, the apparatus of
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matrices and linear algebra, the natural language for describing multivariate
distributions, was well developed and in use. Edgeworth’s work is striking to
the reader of today for its modernity.

This work was continued by G. U. Yule (1871-1951), a pupil of Pearson.
Yule links the figures of this Heroic Period – the English breakthrough – with
the major figures of British statistics in the 20th century. For instance, his
An Introduction to the Theory of Statistics of 1911 became, from its eleventh
edition of 1937 on, ‘Kendall and Yule’, co-authored with M. G. Kendall, a
fore-runner of Kendall’s The Advanced Theory of Statistics of 1943, which
became ‘Kendall and Stuart’ (and later, the ‘Kendall, Stuart and Ord’ of
today). A detailed appreciation of Yule’s work is in Stigler (1986), Chapter
10: Pearson and Yule.

Pearson worked extensively on the distribution theory of the sample cor-
relation coefficient r (the sample version of ρ). But the definitive step here
was taken by Pearson’s real successor, R. A. Fisher (1980-1962, later Sir
Ronald Fisher), who found the sampling distribution of r. Fisher’s work is
of enormous interest, partly because he was undoubtedly the greatest statis-
tician who ever lived, partly because his work takes off so directly from that
of the English breakthrough described above. But one must end somewhere.
The second Heroic Period just described may be thought to end as well in
1900 as anywhere else – British statistics has continued to demonstrate great
intellectual vitality ever since – and we will close our account, as Stigler did
his, in 1900.

8. The Long Pause: Why Did It Happen?
It is always difficult to ‘prove a negative’. The Long Pause did happen,

and it stands in stark contrast with the Heroic Periods described above - in
probability and statistics both before it and after, in mathematics during it,
and in a number of other areas of human endeavour, including engineering,
during it also. To go further is to speculate, which while interesting is also
dangerous. We will content ourselves here with a few comments by way of
summary.

First, the theme of Stigler’s book of 1986 is to analyse the relationship
of the Long Pause to its preceding and succeeding Heroic Periods (not by
these names), with particular reference to the combination of observations
and the use of probability models in inference, and the ‘horizontal’ dimension
– spread of ideas between disciplines - and the ‘vertical’ – the development of
probability from its humble beginnings to its modern form, and its symbiotic
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relationship to statistics and questions of inference. Stigler’s thesis is given
both succinctly in the Introduction to his book (p. 1-8) and in detail in
Part Two: The Struggle to Extend a Caclulus of Probabilities to the Social
Sciences (p. 161-261).

Second, however great one’s devotion to probability and statistics in gen-
eral and to their remarkable history in particular, one must concede that their
importance is outweighed by that of mathematics – not to mention science,
engineering and human affairs more generally. It is at least arguable that
one need look no further for an explanation of the Long Pause than the re-
markable – even explosive – developments in mathematics during this period.
No doubt the diversion of the intellectual energies of our fore-fathers during
this time into laying down the core material of the modern mathematics cur-
riculum played at least some part in the absence of major developments in
probability and statistics during the same period.

Thirdly, the Long Pause, and the circumstances of its ending, clearly
demonstrates the vital importance in scientific enquiry of asking the right
questions. The great men of the first Heroic Period were motivated by celes-
tial mechanics – central to the Newtonian tradition. This tradition is clearly
dominant in the story of the superb triumph of the detailed and recondite
work concerning the Adams-Leverrier affair over Neptune in 1845, for exam-
ple. Whether Gauss, Laplace and Legendre would have warmed to the study
of the social and biological sciences by quantitative means we shall never
know. What we do know is that Galton, an insignificant mathematician but
an inquisitive scientist driven by an urge to understand heredity, was able
to go beyond the achievements of these great mathematicians, and complete
them by the concepts of regression and correlation, thereby giving us the
foundations for the Linear Model ubiquitous in the statistics of today. Any
serious study of the heredity of human height, for example, would rapidly
and inevitably have led to Galtonian regression and correlation.

Fourthly, the crucial importance of the availability of the key mathe-
matical tools – be they concepts, techniques or even merely notations – is
illustrated here. Edgeworth’s Theorem of 1893, giving the functional form
of the multivariate normal density in terms of the relevant parameters – the
elements of the mean vector and the covariance matrix – needs for its very
formulation the machinery of linear algebra – vectors, matrices and linear
transformations – that was available to him but not to Gauss and his con-
temporaries, or to Bravais in 1846 (even though Gauss had another necessary
ingredient, the determinant). One specific case may illustrate the importance
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of notation. Laplace used the symmetric exponential – density exp{−|x|}/2
– as an error curve before his adoption of the normal. It is salutary to real-
ize that this great man was hampered by lack of a proper notation for the
absolute value sign (Stigler (1986), p. 111), which was introduced only later,
by Weierstrass in 1841 (Cajori (1993), Volume 2, p. 123). Finally, if any
underlining of the need to find the right notation were needed, we refer the
reader to Pólya’s magnificent book How to Solve It (Pólya (1957)).

9. Postscript.
We content ourselves here with two closing remarks.

1. The journal Biometrika mentioned above – founded by Weldon in 1900 –
has always had an interest in the history of probability and statistics. This
has found expression in a series of papers Studies in the history of statistics
and probability, published in its pages at intervals since. Two volumes have
been published in book form, Volume I (ed. E. S. Pearson and M. G. Kendall)
and Volume II (ed. Sir Maurice Kendall and R. L. Plackett) (Charles Grif-
fin, London, 1970, 1977 – ‘Studies I’ and ‘Studies II’ in the references). The
series of papers continues. My recent contribution Studies XLVI – Bingham
(2000) – takes the history of probability from 1900 to 1933, and makes my
decision to stop here at 1900 the easier.
2. The subject-matter here centres on the role of the method of least squares.
I first met this a final-year undergraduate (Oxford, 1965-6), learning statistics
from Plackett’s Regression Analysis (Plackett (1960)), a valuable if somewhat
terse exposition. The first sentence of the Preface reads: ‘The field of regres-
sion analysis is here supposed to consist of the algebraic theory and numerical
methods associated with the principle of least squares, its application in the
analysis of experimental data, and the construction of designed experiments’.
I remember puzzling as a student as to why least squares should be called
regression. When, long afterwards, I not only knew this, but found myself
teaching this material, I determined that I would make quite sure that all
my students at least knew this. My continuing interest in the history of our
field stems from this. It is remarkable that the author of Plackett (1960) is
– or developed into – Robin Plackett the historian of our subject.

It is a pleasure to close by saluting the work of Bernard Bru and his
colleagues over twenty-five years of the Paris Seminar on the history of prob-
ability and statistics, and to express my pleasure in participating in this
Journeé Bru.
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A. Bravais (1846): Analyse mathématique sur les probabilités des erreurs de
situation d’un point. Mém. Acad. Roy. Sci. Inst. France 9, 255-332.
F. Cajori (1993): A history of mathematical notations, Volumes 1, 2. Dover.
F. N. David (1962): Games, Gods and Gambling. Charles Griffin, London.
C. C. Heyde and E. Seneta (1977): I. J. Bienaymé: Statistical Theory An-
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