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§1. Introduction

We will need the following classical summability methods. We refer to e.g.

Hardy (1949) for background and details.

Cesàro methods (C, α), α ≥ 1:

sn → s (C,α) means
(

n+α
n

)−1 ∑n
k=0

(
n−k+α−1

n−k

)
sk → s (n →∞).

Abel method, (A):

sn → s (A) means (1− x)
∑∞

n=0 xksk → s (x ↑ ∞).

Euler methods (Eq), 0 < q < 1:
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sn → s (Eq) means
∑n

k=0

(
n
k

)
qk(1− q)n−ksk → s (n →∞).

Borel method (B):

sn → s (B) means e−x ∑∞
n=0

xn

n!
sn → s (x →∞).

For the Riesz (typical) means below, see e.g. Chandrasekharan & Minakshisun-

daram (1952):

Riesz method R(λn, 1). For λn ↑ ∞, sn :=
∑n

0 ak,

sn → s R(λn, 1) means 1
x

∫ x
0 {

∑
λn≤y an}dy → s (x →∞).

Delayed averages. The Riesz method with λn = e
√

n is particularly impor-

tant for us, and we shall abbreviate it to (R). It is equivalent (Bingham

and Tenenbaum (1986); Bingham and Goldie (1988)) to the delayed average

method (D), where

sn → s (D) means 1
u
√

n

∑n+u[
√

n]
n sk → s for all u > 0.

The methods of Borel (B) and Euler (Eq) play an important role in many

areas of mathematics. For instance, in summability theory they are per-

haps the most important methods other than the Cesàro (Cα) and Abel (A)

methods, and two chapters of the classic book of Hardy (1949) are devoted

to them. In probability, the distinction between methods of Cesàro-Abel and

Euler-Borel type may be seen from the following two laws of large numbers,

the first of which extends Kolmogorov’s strong Law.

Theorem L (Lai 1974 ). For X, X1, X2, ... independent and identically dis-

tributed, the following are equivalent:

(i) E | X |< ∞ and EX = µ,

(ii) Xn → µ a.s. (n →∞) (Cα) for some (all) α ≥ 1,
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(iii) Xn → µ a.s. (n →∞) (A).

Lai’s theorem makes precise a sense in which the summability methods C

and A are tied to existence of first moments.

Theorem C (Chow 1973). For X,X1, X2, ... independent and identically

distributed, the following are equivalent:

(i) EX2 < ∞ and EX = µ,

(ii) Xn → µ a.s. (n →∞) (Ep) for some (all) p ∈ (0, 1),

(iii) Xn → µ a.s. (n →∞) (B).

(iv) Xn → µ a.s. (n →∞) (R) (equivalently, (D)).

Chow’s theorem makes precise a sense in which the summability methods

of Borel and Euler are linked to existence of second moments, or variances.

These results were extended to other summability methods, including the

random-walk methods, the circle methods and the Valiron methods Va (a >

0), in a series of papers by the first author and collaborators in the 1980s.

For details and references, see Bingham (1984a), (1984b), (1986a), (1986b),

(1989), Bingham and Maejima (1985), Bingham and Tenebaum (1986), Bing-

ham and Goldie (1988). A sample result is

Theorem BM (Bingham and Maejima 1985). For X,X0, X1, ... independent

and identically distributed, the following are equivalent:

(i) V arX < ∞ and EX = µ,

(ii) Xn → µ a.s. (n →∞) (P ), for some (any) random -walk method,
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(iii) Xn → µ a.s. (n →∞) (Vα), for some (all) a > 0,

(iv) Xn → µ a.s. (n →∞) (C), for some (any) circle method,

(v) Xn → µ a.s. (n →∞) (R).

For further extensions - to Jakimovski methods [F, dn] and Karamata-

Stirling methods KS(λ) - see Bingham (1988), Bingham & Stadtmüller

(1990) (where analogues of the law of the iterated logarithm are also given).

These results, and indeed laws of large numbers generally, are basically can-

cellation phenomena. For such cancellation, independence is sufficient, but

it is by no means necessary. A study of the extension to one type of weak

dependence - φ-mixing - was begun by Peligrad (1985), (1989) and continued

by Kiesel (1997), (1998). We focus here on extension to a different type of

dependence - negative dependence (ND) and negative association (NA). The

intuition is that such negative dependence or association between random

variables assists cancellation.

§2. Negative Dependence and Negative Association

Definition 1 (Lehmann 1966). The random variables X1, · · · , Xn are said

to be negatively dependent (ND) if both

P (X1 ≤ x1, · · ·, Xn ≤ xn) ≤ Πn
i=1P (Xi ≤ xi)

and

P (X1 ≥ x1, · · ·, Xn ≥ xn) ≤ Πn
i=1P (Xi ≥ xi)

for all x1, · · ·, xn ∈ R.

The random variables X1, · · · , Xn(n ≥ 2) are said to be pairwise negatively
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dependent (PND) if (Xi, Xj) is ND for every i 6= j, i, j = 1, ..., n. Events

{En} are said to be negatively dependent if their indicator functions are.

Definition 2 (Joag-Dev and Proschan 1983). The random variables X1, · · · , Xn

are said to be negatively associated (NA for short) if for every pair of disjoint

nonempty subsets A1, A2 of {1, ..., n} ,

Cov(f1(Xi, i ∈ A1), f2(Xi, i ∈ A2)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing and the covariances exist.

Definition 3 (Newman 1984). The random variables X1, · · · , Xn(n ≥ 2) are

said to be linearly negative dependent (LIND for short) if for every pair of

disjoint nonempty subsets A1, A2 of {1, ..., n} and positive λj’s,
∑

j∈A1
λjXj

and
∑

j∈A2
λjXj are negatively dependent.

An infinite sequence is NA, etc., if every finite subsequence is. We will

need the following result; see Joag-Dev and Proschan (1983), Matula (1992),

Bozorgnia et al. (1996).

Proposition. Increasing functions defined on disjoint subsets of a set of

negatively associated r.v.’s are negatively associated.

Let {Xn} be a sequence of ND r.v’s. Then

(i) Cov(Xi, Xj) ≤ 0 i 6= j,

(ii) If {fn} is a sequence of Borel functions all of which are monotone increas-

ing ( or all monotone decreasing) then {fn(Xn)} is a sequence of ND r.v’s.

(iii) The Borel-Cantelli lemma holds for ND events.

For other related negative-dependence concepts, we refer to Lehmann(1966),
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Block et.al.(1982), Ebrahimi and Ghosh(1981), Jogdeo and Patil (1975),

Chandra and Ghosal (1996a), (1996b), Karlin and Rinott (1980) and the

monograph Joe (1997).

We write F j
i for σ(Xk : i ≤ j), and recall the φ-mixing coefficients

φ(n) := sup{| P (B|A)− P (B) |: A ∈ F 0
−∞, B ∈ F∞

n , P (A) > 0}.

§3. Results

The results below extend known results from independence to negative as-

sociation. The first extends Lai’s Th. 1, the second Th. 1 of Chow (1973)

and the third Theorems C and BM (extended to include KS(λ) and [F, dn]).

Theorem 1: For {X, Xn, n} negatively associated and identically distributed,

α ≥ 1, µ given reals, then for the statements

(i) E(X) = µ, E(| X |) < ∞,

(ii) Xn → µ (C, 1) a.s.,

(iii) Xn → µ (C, α) a.s.,

(iv) Xn → µ (A) a.s.,

we have (i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iv). Moreover, if φ(1) < 1/4 then the

above conditions are equivalent.

Theorem 2 concerns delayed sums - sums of the form Su,v, where Su,v :=
∑[u]+[v]

n=[u] Xn for u, v ≥ 0 Write also S̄u,v := max{Su,j : 0 ≤ j ≤ v}, S∗u,v :=

max{|Su,j| : 0 ≤ j ≤ v}; we abbreviate these to Sv, S̄v, S∗v when u = 0.
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Theorem 2: Let X, Xn be negatively associated and identically distributed.

(i) If EX = 0, E | X |r< ∞ for some 1 ≤ r ≤ 2, and E(X+)p < ∞, for some

p ≥ r, then for every 0 < α < r/p

lim sup n−1/pS̄n,nα = 0 a.s.

(ii) If EX = 0 and E | X |p< ∞ for some p ≥ 1, then for every 0 < α <

min(1, 2/p)

n−1/pS∗n,nα → 0 a.s.

(iii) If E | X |p< ∞ for some 1 ≤ p < 2 and EX = 0, or if E | X |p< ∞ for

some 0 < p < 1,

n−1/pS∗n,n → 0 a.s.

In Theorem 3, we take dn ≥ d for some d > 0 and dn = O(n), as in Bingham

(1988).

Theorem 3: For {X, Xn} negatively associated and identically distributed,

consider the following statements:

(i) V arX < ∞, E(X) = µ,

(ii) Xn → µ a.s. Eq for some (all) q ∈ (0, 1),

(iii) Xn → µ a.s. (B),

(iv) Xn → µ a.s. (R),

(v) Xn → µ a.s. [F, dn].

(vi) Xn → µ a.s. (KS(λ)).

Then (i)⇒ (ii)⇒ (iii), (i)⇒ (iv) and (ii)⇒ (v)⇒ (vi). If further φ(1) < 1/4,

then the above statements are equivalent.
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§4. Proofs

We begin with two preliminary results.

Theorem S (Shao (2000)). Let {Xi, 1 ≤ i ≤ n} be negatively associated

and let {X∗
i , 1 ≤ i ≤ n} be a sequence of independent r.v.’s such that Xi and

X∗
i have the same distribution for each i = 1, 2, .., n. Then

(i) Ef(
∑n

i=1 Xi) ≤ Ef(
∑n

i=1 X∗
i ) for any convex function f for which the

expectation on the right hand side exists.

(ii) Ef(max1≤k≤n
∑n

i=1 Xi) ≤ Ef(max1≤k≤n
∑n

i=1 X∗
i ) for any non-decreasing

convex function f for which the expectation on the right hand side exists.

Theorem C* (Chow (1973), Th. 3): If for some 1/2 < α < 2/3,

max
0≤j≤nα

| An + An+1... + An+j | /max(j,
√

n) → 0,

then for every q ∈ (0, 1)

An → 0 Eq.

Proof of Theorem 1.

(i)⇔ (ii) is a result of Matula (1992) (or Chandra and Ghosal (1996b)).

(ii)⇒ (iii) ⇒(iv) are results from analysis (that is, are true generally and do

not depend on the probabilistic structure); see Theorem 55 of Hardy (1949)

and Bingham (1989).

The proof that (iv)⇒ (i) follows as in Kiesel (1997), Proposition. One uses

the Chow-Lai lemma (Lemma 1 there - this needs only φ(1) < 1), the Lévy

maximal inequality (Lemma 2 there - this uses φ(1) < 1/4) and Lemma 3
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there (using the Borel-Cantelli lemma for negative association rather than

for φ-mixing).

Proof of Theorem 2.

Let {Zn} be independent random variables with Zn identically distributed

to Xn for each n. One now proceeds by following the truncation argument

used in Chow (1973) (proof of Th. 1), using Shao’s Th. S for f(x) =

ex to majorise the relevant sum (E exp{∑m
1 Yn+i} in Chow’s notation - the

Yn are obtained from the Xn by truncation, centring and scaling) by the

corresponding sum obtained from the independent sequence {Zn}, to which

Chow’s argument applies. The other main ingredients are the Borel-Cantelli

lemma (Proposition, §2) and the maximal inequality for submartingales (the

independent sequence is a martingale; its exponential gives a submartingale;

see Chung (1974), Th. 9.3.1, 9.4.1, or Hall & Heyde (1980), Th. 2.1).

Proof of Theorem 3. By Theorem 2(ii) and Theorem C*, (ii) holds if (i)

does. That (iii) follows from (ii) is analysis (see e.g. Theorem 128 of Hardy

(1949)). That (i) implies (iv) follows from Theorem 2 and equivalence of

convergence of delayed averages and Riesz means.

Now if dn ≥ δ > 0 for all large n, as assumed, E(1/δ) ⊂ [F, dn] by a result of

Meir (1963) (see also Bingham (1988)). Thus (ii) implies (v) and (vi) (indeed

(ii) ⇒ (v) ⇒ (vi) for suitable q, λ).

For the converse, that any of (ii) - (vi) implies (i), we again follow Lemma 3

of Kiesel (1997). This time, we obtain

Xs
n/
√

n → 0 a.s.,

(in place of Xs
n/n → 0 a.s. in Theorem 1), and conclude E(X2) < ∞ by a
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Borel-Cantelli argument (in place of E|X| < ∞ in Th. 1).

§5. Remarks

1. Baum-Katz law. The Baum-Katz law (on ‘complete convergence’ - rates

of convergence in the strong law) is proved for φ-mixing in Peligrad (1985),

(1989) and Kiesel (1997), (1998), in varying degrees of generality. The Baum-

Katz law for negative association is given in Shao (2000), Th. 5. Another

approach is via the strong laws for summability methods proved here (ex-

tended to the generality of Kiesel (1997)), combined with the analysis results

of Bingham & Goldie (1988). For NQD, see Liang et al. (2002).

2. Other limit theorems for negative association. Note in particular the

Marcinkiewicz-Zygmund strong law (Matula (1992), Chandra & Ghosal (1996b)),

the three-series theorem (Matula (1992)), the functional central limit theo-

rem (Shao (2000)) and the law of the iterated logarithm (Shao & Su (1999)).

3. First mixing coefficient. The conditions φ(1) < 1, φ(1) < 1/4 are from

Peligrad (1989), Kiesel (1997). It would be interesting to know whether the

second is tight, or an artefact of the proof. For the NQD case, the first is

discussed in a paper in Chinese by Wang, Su & Liu (1998), cited in Liang et

al. (2002) (English translation available from the authors).

4. Convergence and integrability. The results here preserve the tight link

between a.s. convergence and integrability found in the independent case.

No such link holds in general. For a collection of dramatic counter-examples,

see Bingham (1986b), §4.

5. Maximal inequalities. That one can pass from sums to maxima of sums
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at no extra cost - in, e.g., Th. 2 here and in the Baum-Katz law - may be

compared with similar situations for φ-mixing (see e.g. Peligrad (1989), Th.

1.1 and Remark 1.3), and with maximal inequalities generally.

6. Large deviations. The range 1/2 < α < 2/3 in Chow’s Th. C* is char-

acteristic of the study in detail of summability methods of Euler-Borel type.

See Hardy (1949), Th. 137, Meyer-König (1949), or for a modern account,

Korevaar (2003+), Ch. 6. The probabilistic background concerns large de-

viations; see e.g. Feller (1971), XVI.7, Ibragimov & Linnik (1971), §9.1.
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