MODELLING ASSET RETURNS WITH
HYPERBOLIC DISTRIBUTIONS !

By N.H. Bingham and Riidiger Kiesel

ABSTRACT In this note we discuss applications of the hyperbolic distribu-
tions in financial modelling. In particular we discuss approaches to modelling
stock returns and interest rates, using a modelling based on hyperbolic Lévy
processes. We consider the structure of the hyperbolic model, its incomplete-
ness, choice of equivalent martingale measure, option pricing and hedging, and
Value at Risk. We also give some empirical studies fitting the model to real
data. The moral of this survey is simply this: if one wants a model that
goes beyond the benchmark Black-Scholes model, but not as far as the com-
plications of, say, stochastic-volatility models, the hyperbolic model is a good

candidate for the model of first choice.

1 Introduction

The benchmark theory of mathematical finance is the Black-Scholes theory, based
on the Wiener process in the continuous-time setting or appropriate discrete-time
versions such as binomial trees. This has the virtues of being mathematically
tractable and well-known, but the equally well-known drawback of not correspond-
ing to reality. Consequently, much work has been done on attempts to generalize
the Wiener-based Black-Scholes theory to more complicated models chosen to pro-
vide a better fit to empirical data, preferably with a satisfactory theoretical basis
also. We focus here on models including the hyperbolic distributions. This family
has been used to model financial data by several authors, including Eberlein &
Keller [16] and Bibby & Sgrensen [7]; much of the underlying work derives from
the Danish school of Barndorff-Nielsen and co-workers.

We mention briefly various other approaches to generalisations of the Wiener-
based Black-Scholes theory. One of the more immediately apparent deficiencies of
the Black-Scholes model is the tail behaviour: most financial data exhibit thicker
tails than the faster-than-exponentially decreasing tails of the normal distribution.
Replacement of the normal law by a stable distribution, whose tails decrease much
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more slowly — like a power 7% — is an idea dating back to Mandelbrot’s work in

the 1960s; for a recent textbook synthesis of this line of work see Mandelbrot [35].
However, it is nowadays recognized that the tails of most financial time series have
to be modeled with « > 2 (see Pagan [37]), while stable distributions correspond
to a € (0,2).

In addition to this, stochastic volatility models and ARCH and GARCH models
from time series have been used, e.g. by Hull and White in [27] and by Duan [14];
overviews are given in [21, 23, 26].

We turn in §2 below to a description of the hyperbolic distribution and theory
used in modelling financial data. The principal complication is that hyperbolic-
based models of financial markets are incomplete (stochastic volatility models share
this drawback; for a recent alternative approach see Rogers [39]). Consequently,
equivalent martingale measures are no longer unique, and we thus face the question
of choosing an appropriate equivalent martingale measure for pricing purposes. We
discuss the relevant theory in §3. We discuss option pricing, hedging and Value at
Risk (VaR) in the framework of a case study in §4.

2 Hyperbolic models of financial markets and hyper-
bolic Lévy motion

We begin with the basic stochastic differential equation (SDE) of Black-Scholes
theory for the price process S = (S;),

dSt = St(,udt + O'th), (].)

where p is the drift (mean growth rate), o the volatility, and W = (W) — the
driving noise process — a Wiener process or Brownian motion. The solution of the
SDE (1) is

S; = Soexp{(pn — 0?/2)t + oW, }, (2)

the stochastic exponential of the drifting Brownian motion udt+odW; . For proof
and references see e.g. [9], §5.6.1.

Now the driving noise process W is a Lévy process — a stochastic process with
stationary independent increments (for a monograph treatment of Lévy processes
see Bertoin [6]). Stationarity is a sensible assumption — at least for modelling
markets in equilibrium on not too large a timescale — and although the independent
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increments assumption is certainly open to question, it is reasonable to a first
approximation, which is all we attempt here. What singles out the Wiener process
W among Lévy processes is path-continuity. Now the driving noise represents
the net effect of the random buffeting of the multiplicity of factors at work in the
economic environment, and one would expect that, analysed closely, this would
be discontinuous, as the individual ‘shocks’ — pieces of price-sensitive information
— arrive. (Indeed, price processes themselves are discontinuous looked at closely
enough: in addition to the discrete shocks, one has discreteness of monetary values
and the effect on supply and demand of individual transactions.)

One is thus led to consider a SDE for the price process Y = (Y;) of the form
dY; =bY;_dt + oY,_dZ;, (3)

with Z = (Z;) a suitable driving Lévy process. Now a Lévy process, or its law,
is characterised via the Lévy-Khintchine formula by a drift «, the variance o of
any Gaussian (Wiener, Brownian) component, and a jump measure dy . Since the
form of dpu is constrained only by integrability restrictions, such a model would
be non-parametric. While the modelling flexibility of such an approach, coupled
with the theoretical power of modern non-parametric statistics, raises interesting
possibilities, these would take us far beyond our modest scope here. We are led
to seek suitable parametric families of Lévy processes, flexible enough to provide
realistic models and tractable enough to allow empirical estimation of parameters
from actual financial data. We refer to Chan [13] for a thorough theoretical analysis
of models of price processes with driving noise a general Lévy process.

One such family has been mentioned in §1: the stable process. There are four
parameters, corresponding to location and scale (the two ‘type’ parameters one
must expect in a statistical model), plus two ‘shape’ parameters, « (governing
tail decay: 0 < a < 2, with a = 2 giving Brownian motion) and [, a skewness
or asymmetry parameter. Our concern here is the hyperbolic family, again a four-
parameter family with two type and two shape parameters. Recall that, for normal
(Gaussian) distributions, the log-density is quadratic — that is, parabolic — and the
tails are very thin. The hyperbolic family is specified by taking the log-density
instead to be hyperbolic, and this leads to thicker tails as desired (but not as thick
as for the stable family).

Before turning to the specifics of notation, parametrisation, etc., we comment
briefly on the origin and scope of the hyperbolic distributions. Both the definition
and the bulk of applications stem from Barndorff-Nielsen and co-workers. Thus [3]
contains the definition and an application to the distribution function of particle
size in a medium such as sand (see also [4]). Later, in [4], hyperbolic distribution
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functions are used to model turbulence. Now the phenomenon of atmospheric tur-
bulence may be regarded as a mechanism whereby energy, when present in localised
excess on one volume scale in air, cascades downwards to smaller and smaller scales
(note the analogy to the decay of larger particles into smaller and smaller ones
in the sand studies). Barndorff-Nielsen had the acute insight that this ‘energy
cascade effect’ might be paralleled in the ‘information cascade effect’, whereby
price-sensitive information originates in, say, a global newsflash, and trickles down
through national and local level to smaller and smaller units of the economic and
social environment. This insight is acknowledged by Eberlein and Keller [16] (see
also [17, 18]), who introduced hyperbolic distribution functions into finance and
gave detailed empirical studies of its use to model financial data, particularly daily
stock returns. Further and related studies are [7, 13, 15, 34, 41, 43].

To return to the Lévy process, recall (see e.g. [6]) that the sample path of a Lévy
process Z = (Z;) can be decomposed into a drift term bt , a Gaussian or Wiener
term, and a pure jump function. This jump component has finitely or infinitely
many jumps in each time-interval, almost surely, according to whether the Lévy
or jump measure is finite or infinite. Of course, the latter case is unrealistic in
detail — but so are all models. It is, however, better adapted to modelling most
financial data than the former. There, the influence of individual jumps is visible,
indeed predominates, and we are in effect modelling shocks. This is appropriate for
phenomena such as stock market crashes, or markets dominated by ‘big players’,
where individual trades shift prices. To model the everyday movement of ordinary
quoted stocks under the market pressure of many agents, an infinite measure is
appropriate. Incidentally, a penetrating study of the mechanism whereby the
actions of economic agents are translated into market forces and price movements
has recently been given by Peskir and Shorish [38].

We need some background on Bessel functions (see [45]). Recall the Bessel func-
tions J, of the first kind ([45], §3.11), Y,, of the second kind ([45], §3.53), and K,
([45], §3.7), there called a Bessel function with imaginary argument or Macdonald
function, nowadays usually called a Bessel function of the third kind. From the
integral representation

K,(r) =

DN =

Zuvl exp {—%x(u + l/u)} du (2> 0) (@)

([45],86.23) one sees that

A
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is a probability density function. The corresponding law is called the generalized
inverse Gaussian GIG) ., ; the inverse Gaussian is the case A = 1: IG, , =
GIG .,y - These laws were introduced by Good in 1953 (see [24]); for a monograph
treatment of their statistical properties, see Jorgensen [29], and for their role in
models of financial markets, [44], III, 1.d.

Now consider a Gaussian (normal) law N(u + B0?,02) where the parameter o2

is random and is sampled from GIG1 4, . The resulting law is a mean-variance
mixture of normal laws, the mixing law being generalised inverse Gaussian. It is
written IE,>N(u + Bo?,0?); it has a density of the form

2a5KV1 (O;JOE%@) exp {—om/_52 )2+ Bz — u)} (6)

([3]), where o? =1+ 3% and §? = x. Just as the Gaussian law has log-density a
quadratic — or parabolic — function, so this law has log-density a hyperbolic func-
tion. It is accordingly called a hyperbolic distribution. Various parametrisations
are possible. Here p is a location and § a scale parameter, while a > 0 and
B (0 < |B] < a) are shape parameters. One may pass from (a, ) to (¢,7) via

a=(p+7)/2, B=(p—7)/2 sopy=0a’—p5,

and then to (&, x) via

1 6 _ -
= ]_ —|— 5 2’ = — = C—.
€= (1+8V)E x =20 =85
This parametrisation (in which ¢ and x correspond to the classical shape pa-
rameters of skewness and kurtosis) has the advantage of being affine invariant
(invariant under changes of location and scale). The range of (£, x) is the interior
of a triangle

V={x):0<|x| <&<1},
called the shape traingle (see figure 1). It suffices for our purpose to restrict to the
centred (p = 0) symmetric (# = 0, or x = 0) case, giving the two-parameter
family of densities (writing ¢ =¢2 —1)

hypc,é(ﬂﬂ)Zmexp{—&/l—i-(%y}’ (¢,0 >0). (7)

Infinite divisibility. Recall (Feller [20], XIIL,7, Theorem 1) that a function
w is the Laplace transform of an infinitely divisible probability law on IR, iff
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Figure 1: Shape Triangle

w=e"Y, where 9(0) =0 and % has a completely monotone derivative (that is,
the derivatives of ¢’ alternate in sign). Grosswald ([25]) showed that if

Qu(z) = Ky_1 (V) [ (V2K (V) (v >0,2>0),

then @, is completely monotone. Hence Barndorff-Nielsen and Halgreen ([5])
showed that the generalised inverse Gaussian laws GIG are infinitely divisible.
Now the GIG are the mixing laws giving rise to the hyperbolic laws as normal
mean-variance mixtures. This transfers infinite divisibility (see e.g. Kelker [32],
Keilson and Steutel [31], §§1,2), so the hyperbolic laws are infinite divisible.

Characteristic functions. The mixture representation transfers to characteristic
functions on taking the Fourier transform. It gives the characteristic function of
hyp¢s as

¢ K (VE+ )
) = 010 C) = g ®)

If ¢(u) is the characteristic function of Z; in the corresponding Lévy process
Z = (Zy), that of Z; is ¢, = ¢'. The mixture representation of hypcs gives

1
fulu) = exp{th(50)},
where k(.) is the cumulant generating function of the law IG,

E (est) _ ek(s)’



N.H. Bingham and R. Kiesel 7

where Y has law IGy, (recall x = %), and Grosswald’s result above is

/q,, Ydz/(z + 1),
0

where
g =2/ (7?2 (T} (VE) + Y, (VE))?) >0 (x> 0)
(thus @, is a Stieltjes transform, or iterated Laplace transform, [46], VIII). Using

this and the Lévy-Khintchine formula Eberlein and Keller [16] obtained the density
v(z) of the Lévy measure u(dz) of Z as

Vo) /exp VI T e/}
7r2|:1:| J1 (0v/2y) +Y2( \/_)) |z|

(9)

and then
dp(u) = exp{tK(%uQ)}, K(%UQ) = / (e™" — 1 — juz) v(z)dw.
Now [45], §7.21
Ju(xz) ~ /2/mzcos <m — %T{'l/ — iw) ,
) ) (x — 00).
Y,(z) ~ +/2/nzsin (x — 5T = Zw) ,

So the denominator in the integral in (9) is asymptotic to a multiple of y% as
y — oo. The asymptotics of the integral as x | 0 are determined by that of the
integral as y — oo, and (writing /2y + ({/0)? as t, say) this can be read off
from the Hardy-Littlewood-Karamata theorem for Laplace transforms (Feller [20],
XIIL.5, Theorem 2, or Bingham-Goldie-Teugels, [8], Theorem 1.7.1). We see that
v(z) ~ c/z?, (v ] 0) for ¢ a constant. In particular the Lévy measure is infinite,
as required.

From driving noise to asset returns. Returning to the SDE (3), with driving
noise a hyperbolic Lévy process Z as above, the solution is given by the stochastic
exponential

Y(t) = Y (0) exp {ZN (1) + pt} I1 (1 +AZSS (s)) eAZ°) (1)
0<s<t
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(here the quadratic variation [Z]; is just

> (AZ)?,

s<t

with no continuous component, as Z is a pure jump process). Passing to loga-
rithms to pass from prices to returns, one obtains two terms, the hyperbolic term
Z, + pt and the sum-of-jumps term. To first order, this is Y., (AZs)*. Now
since the Lévy measure is infinite, small jumps predominate, and these become
second order effects when squared, so negligible. Thus to a first approximation,
the return process is hyperbolic.

Tails and Shape. The classic empirical studies of Bagnold [1, 2] reveal the
characteristic pattern that, when log-density is plotted against log-size of particle,
one obtains a unimodal curve approaching linear asymptotics at +oo. Now the
simplest such curve is the hyperbola, which contains four parameters: location
of the mode, the slopes of the asymptotics, and curvature near the mode (the
modal height is absorbed by the density normalisation). This is the empirical
basis for the hyperbolic laws in particle-size studies. Following Barndorff-Nielsen’s
suggested analogy, a similar pattern was sought, and found, in financial data,
with log-density plotted against log-price. Studies by Eberlein and co-workers
[16, 17, 18], Bibby and Sgrensen [7], Rydberg [42, 43] and other authors show that
hyperbolic densities provide a good fit for a range of financial data, not only in the
tails but throughout the distribution. The hyperbolic tails are log-linear: much
fatter than normal tails but much thinner than stable ones.

Hyperbolic diffusion model. We pointed out that the weakness of the hyper-
bolic Lévy process model lies in the independent-increments assumption. This is
avoided in the hyperbolic diffusion model of Bibby and Sgrensen [7]. They use a
stochastic volatility v(Xj), where dX; = v(X;)dW;. For v%(.) log-hyperbolic,
this gives rise to an ergodic diffusion, whose invariant distribution is hyperbolic.
See Bibby and Sgrensen [7] §2 for the model, §3 for its fit to real financial data
and §4 for option pricing.

3 Equivalent martingale measure

As in the other non-normality approaches mentioned above, the drawback of the
model is that the underlying stochastic model of the financial market becomes
incomplete. We thus face the question of choosing an appropriate equivalent mar-
tingale measure for pricing purposes. We outline here two approaches to deter-
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mining an equivalent martingale measure, the risk-neutral Esscher measure and
the minimal martingale measure.

3.1 General Lévy-process based financial market model

Recall our Lévy process based model of a financial price process:
dYy = bY,_dt + oYy_dZ,, (3)

with Z = (Z;) a suitable driving Lévy process on a probability space (Q,F, IF, IP) .
The characteristic function takes the form

IE (exp{10Z;}) = exp{—t(0)}

with 1 the Lévy exponent of Z. The Lévy-Khintchine formula implies

02 1
WO) = SO +iad+ / (1 ¢~ ibx) p(da)
{lel<1}
+ / (1 —~ e‘“””) pu(daz)
{lel>1)

with a,c € IR and p a o-finite measure on IR/{0} satisfying

/min{l,xQ},u(dx) < 00.
p is called the Lévy measure.

From the Lévy-Khintchine formula we deduce the Lévy decomposition of Z , which
says that Z must be a linear combination of a standard Brownian motion W and
a pure jump process X independent of W (a process is a pure jump process if
its quadratic variation is simply (X) = > <,(AX)?). We write

Zt = CWt + Xt. (11)

Under further assumptions on Z; we can find a Lévy decomposition of X (for
details see [13], §2 or [44], III §1b and VII §3c). This leads to the decomposition

Zt = CWt + Mt + at, (12)
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where M; is a martingale with My = 0 and a = IE(X;). We shall assume the
existence of such a decomposition (12). Then we can restate (3) as

dY; = (a0 + b)Yi_dt + oY;_(cdW + dMy), (13)

where the coefficients b and o are constants (though one can generalise to deter-
ministic functions). Now (13) has an explicit solution

t t t

o?c?
Y, = Yy exp /cadWs+/odMs+/<aa+b— 5 >ds
0 0 0
x [ (+0AM,)exp{—cAM,}.

0<s<t

In order to ensure that Y; > 0 for all ¢ almost surely, we need cAM; > —1 for
all ¢t. A sufficient condition is that the jumps of X should be suitably bounded
from below.

We also introduce the (locally) risk-free bank account (short rate) process B; with
dBt = ’)”tBtdt, (14)

with 7, a suitable process.

3.2 Existence of equivalent martingale measures

To characterise equivalent martingale measures € under which discounted price
processes S; = S, /By are (local) F;-martingales, we rely on Girsanov’s theorem
for semi-martingales. (See Jacod and Shiryaev [28], III §3d, for a thorough treat-
ment, or [44], VII §3g for a textbook summary. Biithlmann et al. [11] provide a
discussion geared towards financial applications.) We follow the exposition in [13],
to which we refer for technical details. Define a process L; as

t

Ly=1+ | GsLs_dBs + L, [H(s,z) — 1]M (ds,dz), (15)
[ore]]

with functions G and H satisfying certain regularity conditions. Then

Theorem 3.1. Assume @ is absolutely continuous with respect to IP on Fr,
and

d

Q| _,

dIP |z,
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with IE(Lt) =1. Under @ the process
Wy =W, — / Gds

1s o standard Brownian motion and the process X 1s a quadratic pure jump process
with compensator measure given by

v(dt,dz) = dtvy(dx),
where

y(dz) = H(t,z)v(dx)
and the previsible part is given by

t

= Eg(X)) = +//R$(H(s,ac)—1)y(dx)ds.

0

Using Theorem 3.1 we can write the discounted process S in terms of the @
martingale M and the @ Brownian motion W and read off a necessary and
sufficient condition for S to be a @ martingale:

corGy + aoy + by — ry + /Rasx(H(s, z) — Vv(dr) = 0. (16)
T

Since the martingale condition (16) doesn’t specify the functions G and H uniquely,
we have an infinite number of equivalent martingale measures, i.e. the market
model is incomplete. We hence face the problem of choosing a particular martin-
gale measure for pricing (and hedging) contingent claims.

3.3 Choice of an equivalent martingale measure

We briefly discuss two widely used approaches (for an overview see Bingham and
Kiesel [9], chapter 7).

Minimal martingale measure. Consider the problem of hedging a contingent
claim H with maturity 7' (modelled as a bounded Fr -measurable random vari-
able) in an incomplete financial market model. Under an equivalent martingale
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measure @ we only can obtain a representation of the form
T
H= Hy + /ftdgt + L,
0

where (L;) is a square-integrable martingale orthogonal to the martingale part
of S under IP. ¢ corresponds to a trading strategy which would reduce the
remaining risk to the intrinsic component of the contingent claim. Therefore we
try to find a martingale measure that allows for such a decomposition and preserves

orthogonality. Such a measure is called minimal martingale measure.

Esscher transforms. The idea here is to define equivalent measures via

t

t
exp —/Qssts—i—/z/)(Os)ds , (17)
0

0

dIPy
dIP

Fi

where () = —log IE(exp(—071)) is the Lévy exponent of Z given by (3). One
then has to choose 6; to satisfy the martingale conditions. The use of Esscher
transforms as a technical tool has a long history in actuarial sciences. Gerber and
Shiu [22] were the first to introduce it systematically to option pricing. Chan [13]
provides an interpretation of it in terms of entropy — the measure IP encapsulates
information about market behaviour, then pricing by Esscher transforms amounts
to choosing the equivalent martingale measure which is closest to IP in terms of
information content. Equilibrium based justifications have been given in [12, 22].
Further background information can be found in [13], [9], §7.3 and [44], VII §3c.

We outline an approach suggested by Rogers [40] (for a general discussion of opti-
mal consumption/investment problems see [30, 33]). Consider a financial market
defined as in §3.1 with a discount process 3(t) = e %, § > 0 a constant and in-
troduce a representative agent with a utility function U . Suppose that the wealth
process of the investor satisfies

Y,
dX; = rX,dt + m <% - rdt) — Cydt, (18)

t—

with (m;) resp. (C;) the portfolio resp. consumption process of the investor. The
return process dY;/Y;_ is given as in (3) with a suitable driving Lévy process.
The investor wishes to maximise

o0

E /exp{—ét}U(Ct)dt . (19)
0
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We specialize to a utility function U(z) = —y~!'e™* and solve the investors
optimisation problem following the standard Hamilton-Jacobi-Bellman approach
(see Karatzas and Shreve [30], §5.8, or Korn [33]). This leads to an optimal
consumption process C; (and an optimal portfolio process 7*).

Now the equivalent martingale measure is given by

_r AQ _ _
rt — rt Otyrl( v
e o5 ., e "Ly x e U (CY). (20)
Solving (20) leads to
Ly = exp{—0"Z; + (07t}

with an optimal parameter 6*, which is exactly of form (17).

4 Case study

4.1 Fitting the hyperbolic distribution

It is well known that the normal distribution fits stock returns poorly. In this
section we compare the normal fit with the fit obtained by using the hyperbolic
distribution (similar studies are contained in Eberlein and Keller [16], Rydberg
[43]). As an example we consider daily BMW returns during the period September
1992 — July 1996, i.e. a total of 1000 data points. We fit the normal distribution
using the standard estimators for mean and variance. To estimate the parameters
of the hyperbolic distribution we use a computer program described in Blaesild and
Serensen [10]. Under the assumptions of independence and identical distribution
a maximum likelihood analysis is performed. The maximum likelihood estimates
of the parameters are

~

& =289.72 [=4.7184
5 =0.0009 4= —0.0015

Figure 2 shows the corresponding empirical density, the normal density and the
hyperbolic density. Figure 2 indicates there is more mass around the origin and
in the tails than the normal distribution suggests and that fitting returns to a
hyperbolic distribution is to be preferred. The same conclusion is made even more
clearly in the wider range of empirical studies, and the accompanying density plots,
given by Eberlein and Keller [16].
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Figure 2: Density Plots
4.2 Constructing the hyperbolic Lévy motion

Given the empirical findings in §4.1 it is natural to concentrate now on the sym-
metric centered case, i.e. set 4 = (3 = 0. This leads to modelling the stock-price
process by (10) (i.e. (3) with driving noise a hyperbolic Lévy process). As men-
tioned above the return process so generated is hyperbolic to a first approximation.
To generate exactly hyperbolic returns along time-intervals of length 1 Eberlein
and Keller [16] suggest writing

S(t) = S(0) exp{Z*°(1)} (21)

as a model for stock prices, and we shall work with this model in the sequel.
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4.3 The risk-neutral Esscher measure

To price contingent claims in the hyperbolic Lévy model we use Esscher transforms,
which are defined via (17). Now in our model (21) the function 6(.) in (17) reduces
to a constant. Therefore defining the moment-generating funcion of Z¢°(t) as

M@,t) = E [6924’5(”] (22)

the Esscher transforms are defined by
L(t) = {7 Opr(p,1) 23
1) ={e @0}, (23)

(observe that L is a positive martingale). According to (17) we define equivalent
measures via
P,

op | =10

Fi

and call 1Py the Esscher measure of parameter 6.

The risk-neutral Esscher measure is the Esscher measure of parameter 6 = 6* such
that the process

{e*“hs*(t)}ltZO (24)
is a martingale (with r the daily interest rate). From the martingale condition
E [e"'5(t);6*] = S(0)

we find

_ M(1+0%,1)

o M(6%,1)

from which the parameter 6* is uniquely determined. Indeed, since the moment
generating function MS° (u,1) is

r

, _ ( Ki(V¢§? = %u?) ¢
MCrS(u,1)—KIC el |u|<g,

we have

S(EEER) e

o (asam) | 2 e

Given the daily interest rate r and the parameters (,0 equation (25) can be
solved by numerical methods for the martingale parameter 6*.

r = log (25)
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4.4 Option pricing

A useful tool for option pricing in the hyperbolic model (21) (and indeed any
model of type S(t) = S(0)exp{X(¢)} with X (¢) a process with independent and
stationary increments) is the following (compare [22])

Lemma 4.1 (Factorisation formula). Let g be a measurable function and h, k
and t be real numbers, 6 > 0, then

B [S*g(S(1)); | = B[SO h] Elg(S®)ik + b (26)

We now value a European call with maturity 7' and strike K in the hyperbolic
model, that is we assume that the underlying S(¢) has price dynamics given by
(21). By the risk-neutral valuation principle we have to calculate

B[ (S(T) — K)07] = B [e7(S(T) — K)srys:67]

= e "T{E[S(D1(sr)y>k}: 0] — KB [K1s7)5x:07]} -

To evaluate the first term we apply the factorisation formula with & = 1,h = 6*
and g(z) = 1,5y and get

E [S(T)lsr)>k1:0*] = E[S(T);0*E [1ig1)>ky; 0" +1]
= E[e"™"S(T);0*] eTIP[S(T) > K; 60" + 1]
= S0 TP[S(T) > K;0* 4+ 1],

where we used the martingale property of e "S(¢) under the risk-neutral Esscher
measure for the last step. Now the pricing formula for the European call becomes

S(0)IP[S(T) > K;0* + 1] — e "' KIP[S(T) > K;6*]. (27)

We now can use formula (27) to compute the value of a European call with strike

K and maturity 7. Denote the density of £(Z%° (t)) by ftCﬁ (compare (5) for
the exact form). Then

B[ T(Sp — K)*;0*] = S(o)/f%‘s(x;e* + 1)dz (28)

o0
—e "TK / f%’é(x; 0*)dx,
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where ¢ = log(K/S(0)).

Eberlein and co-authors [16, 17] compare option prices obtained from the Black-
Scholes model and prices found using the hyperbolic model with market prices.
They find that the hyperbolic model provides very accurate prices and a reduction
of the smile effect observed in the Black-Scholes model.

4.5 Risk-management: Hedging and Value-at-Risk

We consider hedging first, and focus on computing the standard hedge parameters,
i.e. the so-called greeks. It is relatively easy to compute the delta of the European
call C' using formula (28). Now

o.¢]
. dC .
dsS

c

K
£ (2;0% + 1) da — f5°(c; 0" + 1) + e T ££0(c; 6%).

A
S

Consider the last two terms. Using subsequently the definition of fT’(S(.; .) and 6*
we get
— %’6(0; 0" +1)+ e_TT%fICfS(c; 6*)
e K e ()

M(@o*+1)T S M((6%)T

c0* )0 ch* 0

K TS K e ()

S M(0*+1)" S e TTM(6* + 1)T
= 0.

So we end up with the simple expression
oo
— C75 . O*
A= /fT (2;0" + 1)dz.
C

Other sensitivity parameters can be computed in a similar fashion; however, as
above the evaluation has to be done numerically.

We study aspects of risk-management in terms of Value-at-Risk in a simple linear
position in the underlying asset. We compare a normal fit and a full hyperbolic
fit with a tail approximation via Extreme-Value theory. In particular, to com-
pute high quantiles we use the Peak-over-Threshold method, which is outlined in
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Embrechts, Kliippelberg and Mikosch [19] §6.5. (A detailed study using the POT
method has been done by McNeil [36].) As may be seen from the accompanying
table, the EVT quantiles obtained using Extreme-Value theory are more accurate
than either the normal or hyperbolic quantiles. This is to be expected: Extreme-
Value methods, being specifically designed for the tails, outperform other methods
there. By contrast, the hyperbolic approach is designed to give a reasonable fit
throughout, and in particular a better fit overall than the normal.

Quantile || empirical normal hyperbolic EVT
0.1 % -0.04743  -0.03670 -0.06257 -0.05388
0.5 % -0.03490 -0.03051 -0.04927 -0.04180
1% -0.03004 -0.02751 -0.04138 -0.03655
5% -0.01873 -0.01931 -0.02543  -0.02430
95 % 0.01863  0.02028 0.02626  0.01863
99 % 0.03137  0.02848 0.045302  0.03140
99.5 % 0.03541  0.03148 0.053259  0.03894
99.9 % 0.06861  0.03767 0.069521  0.06332

Table 1: Comparison of Quantiles

5 Conclusion

The hyperbolic model has a good case to be regarded as the model of first choice
in any situation where the benchmark normal, or Black-Scholes, model is found
inadequate. It has a sound theoretical basis, the independent-increments assump-
tion being the one most open to question. Also, in its four-parameter and two-
parameter forms, it has a suitable set of readily interpretable parameters. Thanks
to the already developed software [10], fitting the model empirically to actual data
is quick and convenient. It gives a reasonable fit throughout, but is outperformed
by methods based on extreme-value theory in the tails. (More examples can be
found on the webside of the Freiburg Center for Data Analysis and Modelling,
http://www.fdm.uni-freiburg.de/UK/).

Acknowledgement. To perform the Peaks-over-Threshold analysis in $4.5 we
used the software EVIS written by A.McNeil. The software can be used in an S-
Plus framework and may be downloaded from www.math.ethz.ch/mcneil /software.html.
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