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Abstract
Sir Harry Pitt worked (as H. R. Pitt) with Norbert Wiener in 1938 on

Wiener’s general Tauberian theory. Mathematically, he is best known for
Pitt’s form of Wiener’s Tauberian therem, and as the author of the first
(1958) monograph on Tauberian theory. He is otherwise best known for hav-
ing been Vice-Chancellor of Reading University, 1964-78.

Introduction
Sir Harry Pitt was a pure mathematician most prominent for his work on
Tauberian theorems. A pupil of G. H. Hardy, he was much influenced by Nor-
bert Wiener; his best-known contribution is Pitt’s form of Wiener’s Taube-
rian theorem. His first book (30) of 1958 was until 2004 the only monograph
on Tauberian theorems. Pitt was Vice-Chancellor of Reading University from
1964 to 1978, for which he was knighted on his retirement in 1978. He was
a kind and considerate man, a devoted husband (for sixty-three years) and
father, of four sons.

Background
Harry was born on 3 June 1914 at Greets Green, West Bromwich, Stafford-
shire. He was the only son of Harry Pitt and Florence Harriet (neé Draper).

His sister Sybil was born in 1921 and died in 2003.
Harry Pitt Senior had no opportunity for formal education after the age

of 13, when he left school. After completing his engineering apprenticeship
he went into motor car engineering and was for many years in charge of the
inspection and testing department of the Bean Motor Car Company.

H. R. Pitt’s ancestors were small farmers and craftsmen.

Education and Early Life
H. R. Pitt was educated at Greets Green Primary School, 1919-1921, Church
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of England School, Wall Heath, 1921-1924 and King Edward’s School Stour-
bridge, 1924-1932. He left the latter with a Governor’s Exhibition, a Stafford-
shire County Major and a State Scholarship and a major open scholarship
to Peterhouse, Cambridge.

Harry writes ”King Edward’s had a large sixth form and, particularly in
the early thirties, a very high academic standard. Teaching in Science and
Mathematics was excellent and I do not regret the fact that I spent my last
four years at school reading little else. My response to teaching in humane
studies was less satisfactory and my early introduction to History, Litera-
ture and Languages left me with a positive distaste for these subjects which
lasted well into my undergraduate years. I have since tried to remedy this
distortion. This may have been due to the fact that I was younger by a year
and a half than the average for my form and was too immature to benefit
from the sort of approach which was then usual. On the other hand, many
of my contemporaries with a scientific bent had similar difficulties, and I
have come to the conclusion that the normal school examination approach
to general education was (and still is) quite the wrong one. A high degree
of specialization is still imposed on pupils in sixth forms, but moves to al-
low a broader range of study are making progress, albeit slowly. My own
experience convinces me that some concentration of study, not necessarily so
extreme, is appropriate for some children and, when it is no longer imposed,
should not be forbidden.”

Pitt was in Peterhouse as an undergraduate from 1932 to 1935, passing
with First Class Honours in Parts I and II and with distinction in Part III
of the Mathematical Tripos and graduating with a First Class B.A. in 1935.

His tutor and supervisor was J. C. Burkill (F.R.S. 1953), and Harry says
that Burkill’s attitude and approach made a profound impression on him. He
was also strongly influenced by lectures, on functions of a complex variable
by A. E. Ingham (F.R.S. 1945), almost periodic functins by A. S. Besicov-
itch (F.R.S. 1934), theory of functions by J. E. Littlewood (F.R.S. 1916) and
divergent series by G. H. Hardy (F.R.S. 1910). It was the latter who deter-
mined the direction of Pitt’s interest while a research student 1935-1936 and
a Bye-Fellow 1936-1939 at Peterhouse. Hardy’s supervision resulted in Pitt’s
Ph.D. in 1938, for a thesis on Tauberian theorems. These later became the
subject of his first book (30). Pitt also gained a Smith’s Prize in the same
year. He was a Choate Memorial Fellow at Harvard University 1937-1938.

Career
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In 1939 Pitt moved to Aberdeen University as an assistant lecturer. In 1942
he moved to London for work at the Air Ministry and the Ministry of Air-
craft Production for three years, under H. E. Daniels (F.R.S. 1980). Within
RAF Coastal Command he used probability theory and the newly develop-
ing subject of operational research to devise methods of attacking German
U-Boats and the most efficient use of RAF resources such as fuel. He refused
a commission because he felt that it would limit his freedom to influence
senior officers.

In 1945 with the war ended Harry was appointed Professor of Mathemat-
ics at Queen’s University, Belfast at the age of 31, jumping from the bottom
of the academic ladder to the top. Clearly his war-time contribution and a
number of distinguished papers played a key role.

In 1950 Pitt moved to the University of Nottingham as Professor of Pure
Mathematics. The Vice-Chancellor was Bertrand Hallward, with ambitions
to develop the University. Pitt succeeded H. T. H. Piaggio, whose textbook
on Differential Equations is still useful (Piaggio 1952). Applied Mathemat-
ics was coming to the fore in this period and Pitt persuaded the University
to establish a chair in this subject to which Rodney Hill (F.R.S. 1961) was
appointed in 1953.

Pitt encouraged the Student Mathematical Society, bringing in such speak-
ers as Mary Cartwright DBE (F.R.S. 1947) and Charles Coulson (F.R.S.
1950).

Mike Sewell and Margaret Joules have written of his inspiration to stu-
dents, through the clarity of his lectures introducing the ε,δ style of analysis.
His enthusiasm and love for the subject permeated his lectures. So when the
more senior students set out to produce a mathematical magazine they called
it ‘Epsilon’. The Times devoted eleven column inches to a complimentary
review of the first issue. Pitt’s door was always open to any student needing
help or advice. When Michael Sewell wanted to change from Mining Engi-
neering to Mathematics with inadequate prerequisites in the latter Pitt made
it possible. He also supervised the Ph.D. of Clive (later Sir Clive) Granger,
Nobel Laureate in Economics in 2003. Another challenge which Pitt had to
meet was to see that the new Mathematics and Physics Building, which he
had played a big part in planning, was ready for occupancy on the scheduled
date.

Nottingham University made full use of his administrative skill. He be-
came in turn Member of Council, Vice-Dean and Dean of the Faculty of
Science, and Deputy Vice-Chancellor.
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Pitt spent the year 1962-63 on leave of absence as Visiting Professor at
Yale University.

Reading
Harry Pitt was Vice-Chancellor of Reading University from 1964 to 1978. It
was a period of rapid expansion for universities in which Reading participated
fully. During Pitt’s period of office numbers grew from two thousand to six
thousand. Growth has continued ever since and the numbers now stand at
seventeen thousand and are still rising.

There was an interregnum of eighteen months between the summer of
1963, when Wolfenden left to become the Chairman of the University Grants
Committee, and Pitt’s arrival in 1964. The Acting Vice-Chancellor Professor
J. M. R. Cormack set up a Committee of Deans to help him and this com-
mittee continued with increased strength under Pitt, dealing with expansion,
financial and other policy matters. The Deans were elected by the Faculties
and so Reading University enjoyed a truly democratic government. This was
very much Pitt’s wish. He wanted to be primus inter pares. One of his
first acts was to ask Professor Ronald Tuck, Senior Steward of the Common
Room, to remove the Vice-Chancellor’s chair from the dining room. Pitt’s
authority was to be without artificial aids. This meant that Committee
Meetings took rather longer than under Wolfenden, but a genuine communal
decision was reached in the first instance with senior academic staff. Michael
Sewell says that Pitt conducted meetings in such a way that the participants
only realized afterwards that the conclusions reached were what Harry Pitt
had wanted to happen all along. Perhaps the system resulted in too many
departments. Now physics, sociology and most of engineering are closed.

But during the student troubles of the early seventies Pitt, displaying
masterly inactivity, weathered the storm well, though at one stage the Vice-
Chancellor and the Registrar were locked up by the students, and had to
escape with a spare key.

A Department of Applied Statistics was started originally in 1963 with
separate funding.

Harry’s wife Catherine Lady Pitt played a full role in all social staff and
student activities. A perhaps apocryphal story has it that Harry was once
introduced as the Vice- Chancellor’s wife’s husband. They generated enor-
mous liking and respect. He was calm and thoughtful as a Vice-Chancellor
and as a man.

The University absorbed the National College of Food Technology at
Weybridge in the 1960s, and the College of Estate Management in South
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Kensington.
During Pitt’s period as Vice-Chancellor the move to the large parkland

setting at Whiteknights was completed. So there were many opportunities
and associated duties for Pitt. He had the skills and diplomacy that were
needed.

During the student disturbances many colleagues noted that the registra-
tion plate of Pitt’s car began with the letters WOE, but the university came
out strongly from this period and many new buildings were completed.

Pitt served on many committees, of which the following is a selection.
He was Vice-Chairman of the Committee of Vice-Chancellors and Princi-
pals 1976-1977, President of the Institute of Mathematics and its Applica-
tions 1983-1985, Chairman of the Universities Central Council for Admissions
1975-1978, and a member or chairman of many other bodies such as the gov-
erning body of Reading School, chairman of Section A of the Royal Society
1960-1961 and of the Royal Ssociety Education Committe 1980-1985. Pitt
was knighted in 1978, the year he retired from being Vice-Chancellor. He re-
ceived honorary doctorates from Aberdeen and Nottingham (1970), Reading
(1978) and Belfast (1980).

Retirement and Family
On retiring from being Vice-Chancellor Sir Harry and Lady Pitt moved to a
house close to the campus, but they took care never to interfere with Harry’s
successor. They moved to Epsom in 1992 and to Derby in 2002. In his last
three years he was wheelchair bound, having had a fall in Epsom and there-
after problems with his balance.

During his long life Harry was always a strong family man. He had a
strong bond with his sister Sybil (1921-2003). He was married on 5 April
1940 to Clemency Catherine Jacoby, second daughter of Henry Charles Ed-
ward Jacoby M.I.E.E. and Bertha (neé Dubois). Henry Jacoby was for many
years a member of the research staff of the General Electric Company and
contributed substantially to the early development of the alternating current
motor. Harry and Catherine stayed together sixty-three years till Cather-
ine died in 2004. They had four sons, Mathew (1945), John (1947), Daniel
(1954) and Julian (1958).

Harry says that his home life was very happy and secure, and so was
the life which he and Catherine provided for their sons. In return the sons
have clocked up a hundred years of happy marriage between them. They
had lovely parties especially on New Year’s Eve, when they acted out lit-
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tle sketches, taking off their colleagues. They went on marvellous family
holidays, especially near Snowdonia and Cader Idris from their cottage in
Abergynolwyn. Harry would climb Cader, 2,927 feet, well into his late sev-
enties.

Harry had cycled in Czechoslovakia in 1938, and took the family on Eu-
ropean holidays after the war. He would always take Catherine’s side, stayed
calm and never got cross.

Harry had total personal integrity. If he said he would meet the family
at the end of a climb with the car and a thermos of tea he would always be
there. He was practical as well as a theoretical pure mathematician, making
a valve radio in the 1920s. Then in the 1960s he helped Daniel do the same,
tactfully suggesting a missing connection to make the set work.

He was never pompous and it was said of him by one of his colleagues
that ”his power was only equalled by his modesty”. He was shrewd in the
ways of the world. His advice on restaurants was to choose the cheapest
menu at the most expensive place, and in considering whether to purchase a
house, to think about what you can change (so don’t let that put you off),
and what you cannot (so if it matters to you stay clear).

Pitt was ‘A communicator extraordinaire’, able to convey difficult con-
cepts, and to summarize complex histories. But he also listened to the views
of others, felt where they were coming from and so, in many walks of life,
resolved conflict.

As his sons have said, Harry Pitt was a man blessed with all the ‘gifts of
the spirit’ listed by St Paul in his letter to the Galatians (5:22): ‘love, joy,
peace, patience, kindness, goodness, faithfulness, gentleness and self-control’.

Mathematical work

Tauberian theorems

Pitt was a research student of G. H. Hardy from 1935 to 1938. It was
Hardy who introduced Pitt to the subject of Tauberian theorems, in which
he was to do his deepest work.

The precursor of Tauberian theorems is Abel’s continuity theorem for
power series (1827) – that if a power series

∑∞
0 anx

n converges for x = 1, its
value converges to

∑∞
0 an as its argument x increases to 1. Writing

sn :=
∑n

k=0 ak for the partial sums and using partial summation, this may be
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recast as saying that
sn → s (n →∞)

implies

(1− x)
∞∑

n=0

snxn → s (x ↑ 1).

The converse implication is false, as examples readily show. But in 1897
Alfred Tauber proved a partial converse, under the additional condition
an = o(1/n), improved by Littlewood in 1911 to an = O(1/n). Hardy and
Littlewood worked on results of this type from 1913 on, and introduced the
term Tauberian theorem for them. The conditions above are the proto-
types for o- and O-Tauberian conditions respectively; the O-case is typically
much harder. Hardy and Littlewood studied specific summability methods –
those of Cesàro, Abel, Euler, Borel, Riesz etc., and relatives such as Laplace
transforms. The Hardy-Littlewood approach to the Tauberian theorem for
Laplace transforms was greatly simplified by Karamata in 1931.

The whole area of Tauberian theorems was revolutionized in 1932 by Nor-
bert Wiener’s work, which was quite general. Wiener worked with convolu-
tions

∫∞
−∞ k(x− t)f(t)dt, where k is a Lebesgue-integrable function, k ∈ L1,

thought of as a kernel, and f is a function – bounded, say (so that the con-
volution exists). Wiener’s favourite tool was the Fourier transform, and as
k ∈ L1 its Fourier transform k̂(t) :=

∫
eixtk(x)dx exists, at least for t real.

The key to Wiener’s approach was his approximation theorem, or closure
theorem (‘Wiener’s theorem’): that linear combinations of translates of k
are dense in L1 if and only if k̂ has no real zeros (Wiener (1932), Ch. I,
Wiener (1933), Ch. II). From this, one obtains Wiener’s general Tauberian
theorem – that for such k and f , if

∫ ∞

−∞
k(x− t)f(t)dt → A

∫ ∞

−∞
k(t)dt (x →∞),

then also ∫ ∞

−∞
g(x− t)f(t)dt → A

∫ ∞

−∞
g(t)dt (x →∞)

for any function g in L1 – by an approximation argument. Here the Tauberian
condition is f ∈ L∞. This approach is very fruitful, with many extensions
and variants; almost all known Tauberian theorems for special kernels or
summability methods could be deduced from these general results.

Wiener had spent time at Cambridge, both as a student in 1913-14
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(Wiener (1953), XIV) and as a visiting professor in 1931-32 (Wiener (1956),
Ch. 7), and knew both Hardy and Littlewood, and their work, well. Hardy
suggested that Pitt should study Wiener’s work on Tauberian theorems. In
Pitt’s final year as a PhD student, 1937-38, he was awarded a Choate Memo-
rial Fellowship at Harvard University. There he worked with D. V. Widder,
and with Wiener, a professor of mathematics at MIT, also in Cambridge,
Massachusetts. In 1938 Pitt received his Cambridge PhD. It was his annus
mirabilis: he published eight papers, a quarter of his whole corpus.

1. Generalized harmonic analysis (GHA) (12)
Slightly predating the Wiener Tauberian theory, and leading naturally to it,
is Wiener’s theory of generalized harmonic analysis (GHA), Wiener (1930).
This is devoted to the harmonic analysis of functions that need not be peri-
odic (as in Fourier series), nor in L2 (as in the Parseval-Plancherel theory),
nor in L1, the case Wiener studied by systematic use of the Lebesgue integral.
It is crucial to prediction theory and the spectral analysis of time series (see
e.g. Doob (1953), Ch. XII, which is based on Wiener’s work). Another prime
use is for almost periodic functions, the prototypes of functions with discrete
spectrum. Under suitable conditions, a function f may be represented as a
Fourier-Stieltjes transform f(x) =

∫∞
−∞ e−iyxds(x), where s may be obtained

from the function

σy(x) =
1

2πy

∫ ∞

−∞
f(x− u)

(sin 1
2
yu

1
2
u

)2

du.

2. General Tauberian theorems ((5), (6), (7), (9), (14), (16), (24)).
Pitt’s first major work here was his long paper (5) on general Tauberian
theorems, written in 1937 but published in 1938 (an announcement is given
in (6)). One aim was to extend Wiener’s methods to some areas of Tauberian
theory, such as gap or high-indices theorems (treated below) in which they
had not been fully used. But the most important contribution was to show
that Wiener’s general Tauberian theorem followed from a variant, in which
the above hypotheses are retained: there is an additional Tauberian condition
of slow decrease,

f(u + x)− f(x) → 0 (x →∞, u ≥ 0, u → 0)

and the conclusion becomes

f(x) → A (x →∞).
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Tauberian conditions of this type were introduced by Robert Schmidt in
1925, and were used by Wiener to pass from the conclusion of his general
Tauberian theorem, a statement on asymptotic behaviour of convolutions,
to conclusions on pointwise convergence. Thus Pitt’s result is equivalent to
Wiener’s general Tauberian theorem.

In the first textbook account of Wiener’s Tauberian theory, Widder calls
Pitt’s result Pitt’s form of Wiener’s theorem (Widder (1941), V.10), and uses
it to derive Wiener’s general Tauberian theorem (Widder (1941), V.11). In
Hardy’s book on the subject (Hardy (1949), Notes to Ch. XII), he points out
that much of Widder’s treatment, and of his own, is based on Pitt’s work.
Later textbook accounts are in Bingham, Goldie and Teugels (1987), Ch. 4
(where Pitt’s form of Wiener’s theorem is called the Wiener-Pitt theorem),
and Korevaar (2004), Ch. II.

Slow decrease, and slow increase, defined similarly, are the prototypes of
one-sided Tauberian conditions, in the real case (thus in Littlewood’s theorem
above, it is enough to have an = OL(1/n), or nan bounded below). This is
typically the case with real non-negative kernels, as Pitt showed in (7). In
(14), the sequel to (5), Pitt develops one-sided Tauberian conditions further,
using his work (12) on GHA.

Much of (5) is devoted to Tauberian classes, a classification of Tauberian
conditions. The ideas introduced there were so clearly important that they
came under detailed scrutiny, and it turned out that the paper contained
errors. These were pointed out by the American analyst R. P. Agnew; Pitt
wrote his brief paper (16) to correct his results.

In addition to Fourier transforms, the Fourier-Stieltjes transform (FST)
K̂(t) :=

∫∞
−∞ eixtdK(x) is also important in the Wiener Tauberian theory,

for functions K of finite variation (all integrals here are Lebesgue-Stieltjes,
and so absolutely convergent). Here the basic role of non-vanishing of the
Fourier transform (on the real line) is replaced by boundedness away from
zero. Note that the presence of a discrete or a continuous singular component
in the Lebesgue decomposition of K is necessary here: were K absolutely
continuous, its transform would tend to zero at infinity by the Riemann-
Lebesgue lemma, so could not be bounded away from zero. It turns out that
a discrete component is essential, and that if a continuous singular component
is present, it must be dominated by the discrete component, in the sense of
the following condition. If D(t) :=

∑
n dneitλn is the Fourier transform of the

discrete component, dq is the continuous singular component if present, then
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one requires

‖q‖ :=
∫
|dq(x)| < inf{|K̂(t)| : t ∈ <},

the Wiener-Pitt condition. In Pitt’s first paper with Wiener, (9), it is shown
that if this condition holds, and also inf{|K̂(t)| : t ∈ <} > 0, then the
reciprocal 1/K̂(t) is itself a FST. Conversely, the Wiener-Pitt condition is
necessary here ((9); see also Pitt’s book (30), Chapter V, Theorems 6 and
8). It was shown further by Kahane and Rudin (1958) that if F (., .) operates
on FSTs, in the sense that F (<K̂,=K̂) is a FST whenever K̂ is, then F is
real entire. Thus the example 1/z of the reciprocal above is excluded.

The existence of such measures, whose FSTs are bounded away from zero
but are nonetheless not invertible, is called the Wiener-Pitt phenomenon.
It has attracted much interest in modern harmonic analysis, and its natu-
ral setting is now known to be non-discrete locally compact groups, rather
than the line as in (9). Textbook accounts are in Rudin (1962), Th. 5.3.4,
Benedetto (1975), Th. 2.4.4 (see also Hewitt and Ross (1970), 519, 574). The
algebraic aspects were first studied by S̆reider (1950), who also corrected the
Wiener-Pitt proof in (9) (Kakutani (1986), 116 and 400; as remarked there,
the relevant ideal structure is extremely complicated). Accordingly, some au-
thors call this the Wiener-Pitt-S̆reider phenomenon. Quantitative versions
are now known, and there are interesting links with the corona theorem in
Hardy space theory; see Nikolski (1999). We return to algebraic aspects and
ideal structure later in connection with Pitt’s book (30).

In (24), Pitt considers transforms g(u) =
∫

k(u, y)s(y)dy not necessarily
of convolution type. Results along the lines of (5) are given.

3. Mercerian theorems ((8), (17)).
It was shown by Mercer in 1907 that for a sequence sn,

1

2
sn +

1

2
.
1

n

n∑

k=1

sk → s (n →∞) ⇔ sn → s.

The point of interest here is that, while the statement has some of the fea-
tures of a Tauberian theorem, no Tauberian condition is needed. The result
is thus not Tauberian. Hardy and Littlewood introduced the term Merce-
rian for results of this type, which go from a hypothesis on a function (or
sequence) and some average or smoothed form of it to a conclusion on the
function alone, with no Tauberian condition. The Wiener Tauberian theory
was applied to Mercerian theorems by Paley and Wiener (1934), IV.18. In
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(8), Pitt applied his work (9) with Wiener to a study of Mercerian theorems
in full generality. This was continued in (17), which also used GHA as in
(12). This work later formed the basis of Chapter V of Pitt’s first book, (30).

4. Ikehara’s theorem (13).
With π(x) the function that counts the number of primes p up to some
positive value x, the prime number theorem (PNT) is the statement that
π(x) ∼ x/ log x as x →∞. This was conjectured by Gauss, and only proved
in 1896 – independently by Hadamard and de la Vallée Poussin, both using
complex analysis. Their work, and that of Landau, showed the crucial role
played here by the Riemann zeta function ζ(s) :=

∑∞
n=1 n−s. Two properties

are particularly relevant here: that ζ has a simple pole at s = 1 of residue
1, and that ζ has no zeros on the line <s = 1. Chapter III of Wiener (1933)
gives an account of PNT, and includes two proofs via the Wiener Tauberian
theory. The first uses Lambert series, as in Landau’s treatment. The second
uses Ikehara’s theorem. S. Ikehara was Wiener’s first PhD student; his paper
of 1931 proves PNT via Wiener Tauberian theory, essentially by subtracting
off the pole of the zeta function at s = 1 and analyzing the remainder. In
Pitt’s second paper with Wiener (13), Ikehara’s theorem is generalized.

For recent developments, using the language of Schwartz distributions
and applied to the twin primes conjecture, see Korevaar (2005).

5. Abel and Cesàro methods (27).
Pitt was also interested, as were Hardy and Littlewood before him, in spe-
cial summability methods. Prominent among these are the Abel method on
power series, and the family of Cesàro methods based on arithmetic means.
The Tauberian theory for all these methods is very similar. However, in (27),
Pitt finds a condition which is Tauberian for the Cesàro method but not for
the Abel method.

6. The Borel method ((5), (28)).
One says that a sequence sn converges to s in the sense of the Borel summa-
bility method, sn → s (B), if

∑∞
n=0 sn.e

−xxn/n! → s as x → ∞. The Borel
method is perhaps the most important summability method after those of
Cesàro and Abel. But, while the Wiener Tauberian theory concerns convolu-
tions, and both the Cesàro and Abel methods are reducible to convolutions
(for the latter, the xn becomes e−xn after a change of variable, and the prod-
uct xn becomes the argument x−t for a convolution after a further change of
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variables), the Borel method does not lend itself to reduction to convolution
form so readily. One needs an approximation procedure to effect this reduc-
tion; see (30), §4.3 for a textbook account, or (5) for the original paper. Pitt’s
work involves the Borel method in two additional ways. The first concerns
the classical ‘Borel-Tauber theorem’ – that sn → s (B) and an = O(1/

√
n)

or OL(1/
√

n) imply sn → s. In (28), Pitt proves the closure in L1(<) of
translates of e−x2

by elementary means, that is, without use of the Wiener
closure theorem (the Fourier transform of e−x2

is an exponential, so non-zero,
so with the Wiener closure theorem there is nothing to prove). The second
concerns the ‘Borel gap theorem’. A gap theorem, or high-indices theorem,
is a result in which, if the terms an of a series are known to vanish except
on some subsequence nk, convergence of the sequence sn :=

∑n
0 ak under

some summability method implies ordinary convergence. Here the point is
that there is no Tauberian condition (beyond an vanishing off the sequence
n = nk). Sometimes such additional Tauberian conditions are imposed; such
results may still be called gap theorems, but results of the earlier type are
then called pure gap theorems. A textbook account of gap theorems from
the point of view of the Wiener theory was given by Wiener’s pupil Nor-
man Levinson, Levinson (1940). A pure gap theorem for the Abel method
was obtained by Hardy and Littlewood in 1926, the gap condition being
nk+1− nk ≥ hnk for some positive h. Examination of the Borel method sug-
gested that the relevant gap condition here was nk+1 − nk ≥ h

√
nk for some

positive h. One of the aims of Pitt’s first major paper (5) in this area was
to bring the field of gap theorems more into line with the Wiener Tauberian
theory. Unfortunately, (5) contained further errors, beyond those addressed
in (16). Not detecting the error relevant to the Borel gap case, Meyer-König
(1953) gave a ‘Borel gap theorem’ under the additional Tauberian condition
sn = O(ecn) for some positive c. The proof, once Pitt’s error was detected,
was incomplete. The result was proved under the stronger additional Taube-
rian condition sn = O(ec

√
n) for some positive c; see (30), Th. 31. However,

even this reveals less than the full truth. The pure ‘Borel gap theorem’ is
actually true – that is, no additional Tauberian condition is needed. But
this was proved only considerably later, by Gaier (1965). This followed sev-
eral earlier partial results, e.g. by Erdös for the related but easier case of
the Euler method. Other approaches were later given by Gaier himself, by
Mel’nik and by Turán. The matter is subtle. For example, if one changes
the continuous variable x → ∞ in the definition of the Borel method to an
integer n →∞ (the ‘discrete Borel method’), no pure gap theorem holds, as
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was shown by Meyer-König and Zeller by functional-analytic methods.

7. Elementary proof of the Prime Number Theorem (29).
One striking feature of the approaches above to PNT is that they involve
complex analysis, since to formulate the problem one needs only integers,
and to formulate its solution, only reals (via the logarithm). It had been a
standing problem of great interest to prove PNT by ‘elementary’ methods –
that is, avoiding complex analysis (it was clear that any such proof would be
harder than the existing ones, so the word ‘elementary’ must be used with
some care here). A very ingenious elementary proof of PNT was found in
1948 by Erdös and by Selberg (extended to the PNT for primes in arithmetic
progression by Selberg in 1950). In his last paper on Tauberian theory (29)
in 1958, Pitt obtains an elementary proof of PNT, using the Stieltjes kernel
K(x) :=

∑
log p≤x log p/p, essentially along the lines followed by Selberg. This

work was done while Pitt was writing his first book ((30), see below), which
also appeared in 1958. The approach of (29) is also used in the last section
of (30).

Analysis

1. Inequalities ((1), (3), (10), (11)).
It was natural for Pitt to become interested in inequalities, in view of the
book by Hardy, Littlewood and Pólya (1934), and two of his earliest papers
are in this area. In (1), he considers infinite double sums

∑
i,j aijxiyj, obtain-

ing results on the space [p, q] (p, q > 0) of sequences with ‖x‖p ≤ 1, ‖y‖q ≤ 1.
In (3), he obtains integral analogues of results of Hardy and Littlewood on
convolutions c = (cn) of non-negative sequences a = (an), b = (bn), of the
form C ≤ KAB, where A =

∑∞
1 n−1(nαan)p, and B, C are defined similarly

in terms of further parameters q, r, β, γ. In (11) he links a = (an) ∈ `p, for
p ∈ [1, 2] with f ∈ Bq, the space of Besicovitch almost periodic functions
with index q, where p, q are conjugate and f has Fourier series

∑
ane

iλnx

with λn real.
In (10), Halperin and Pitt, following work by Halperin in 1937, consider

the subclass D0 of Lp(a, b) consisting of functions f satisfying differential re-
currence relations of the form f0 = q0f , fr+1 = f ′r+qr+1f (r = 0, 1, . . . , n−1),
with the functions qk suitably restricted, and fr(a) = fr(b) = 0. This space
is shown to be dense in Lp(a, b). Operators T of the form Tf =

∑n
0 prfr +cf ,

and their adjoints T ∗, are studied, via inequalities on Lp and Lq. Pitt’s col-
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laborator here was the Canadian mathematician Israel Halperin
(1911-2007), von Neumann’s only graduate student and one of the founders
of the study of von Neumann algebras.

2. Fourier analysis ((2), (4), (23)).
Let f be a function with Fourier coefficients cn. For p ∈ (1, 2], Paley obtained
comparisons between ‖f‖p and (

∑
n |cn|pnp−2)1/p (Zygmund (1959), §XII.5),

following earlier work by Hardy and Littlewood (Hardy (1969), Comments,
p.313, p.399). In (2), Pitt extended these results, and gave analogues for
power series. ‘Pitt’s inequality’ has recently been sharpened by Beckner
(1995), (2008).

In (4), Pitt gives a simplified proof of a result of Cameron (1937), that
if f is almost periodic with an absolutely convergent Fourier series and g is
complex analytic on the range of f , then g(f) also has an absolutely conver-
gent Fourier series.

Three classes of interest are the classes of functions that are (i) Fourier
transforms of integrable functions, (ii) Fourier-Stieltjes transforms of func-
tions of finite variation, (iii) periodic functions with absolutely convergent
Fourier series. Consider the three classes of functions equal in some neigh-
bourhood of a point, xo say, to a function in each of the classes (i) – (iii).
It is shown in (23) that these three classes coincide – that is, that the local
aspects of the three properties are the same.

3. Integro-differential equations ((20), (22)).
The equations studied are of the form

R∑

r=0

∫ ∞

−∞
f (r)(x− y)dkr(y) = g(x)

in (22), with the corresponding homogeneous equation in (20), the summands
on the left being convolutions of the derivatives of a function f with Stieltjes
kernels kr. Crucial here is the function K(ω) =

∑R
0 ωr

∫
e−ωydkr(y). Under

weak conditions, solutions f have expansions of the form
∑

An(x)eωnx, with
An polynomials and ωn the zeros of K.

Probability, statistics, ergodic theory

1. Probability ((15), (19), (21), (26)).
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Wiener was a great probabilist as well as a great analyst – his Wiener mea-
sure of 1923 is the key to a mathematical treatment of Brownian motion,
for example. Through Wiener, Pitt became interested in probability, which
achieved its modern measure-theoretic form through the work of Kolmogorov
(1933). Pitt’s first paper in this area, (15), concerns stochastic processes
with stationary independent increments, or Lévy processes. He focusses on
the fairly simple case, of compound Poisson processes (only finitely many
jumps in finite time-intervals). This is extended from the real-valued to the
G-valued case in (19), where G is a locally compact abelian group. In (21),
on storage models, Pitt considers a stochastic model for the amount held in
store or inventory, giving a comparison between two different replacement
policies. As the paper dates from 1946, this was presumably motivated by
Pitt’s wartime work on operations research. In (26), Pitt addresses the ques-
tion of defining measures in function space. The motivation is the theory of
stochastic processes, where (as with Brownian motion, or Wiener measure)
the set of time-points is uncountable. Care needs then to be taken to ensure
that sets of interest are measurable (‘are events’ – that is, that their prob-
abilities are defined). Foundational work on such problems was done by J.
L. Doob in a series of papers, the earliest of which were known to Pitt, but
the area received a definitive treatment only in the classic book Doob (1953).
As S. Kakutani points out in his review (Mathematical Reviews MR0036289
(12,85f)), (26) contains some errors.

2. Statistics (25).
Pitt’s paper (25) addresses foundational questions in statistical decision the-
ory. He starts from work of Abraham Wald in 1939, citing also work of
the 1920s by Fisher on maximum-likelihood estimation and by Neyman and
Pearson on testing statistical hypotheses. Unfortunately, later work by Wald
is also relevant, as was pointed out by J. Wolfowitz in his review (Mathemat-
ical Reviews 0030172 (10,723g)). The game-theoretic ideas of von Neumann
and Morgenstern (1944) had a decisive influence on the area, as was seen in
the books by Wald (1950), Blackwell and Girshick (1954), and later by many
others.

Pitt’s interest in statistics had important consequences in econometrics,
through his supervision of the doctoral thesis of C. W. J. (later Sir Clive)
Granger at Nottingham (PhD 1959: Granger was Pitt’s only doctoral stu-
dent, according to the Mathematics Genealogy Project). Granger and R.
F. Engle received the Nobel Prize in Economics in 2003, for their work on
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cointegration and other aspects of econometric time series analysis. For back-
ground, see Engle and Granger (1987), and the books Granger and Hatanaka
(1964), Granger and Newbold (1986).

Pitt’s interest in statistics had effects in his later career as Vice-Chancellor
of Reading University. The first head of the Department of Applied Statistics
there, Professor Robert Curnow, writes (Curnow (2006), p.12):
‘The title of the Department needs explanation. The original title was to
be Statistics. Shortly after his arrival the new Vice-Chancellor, Harry Pitt,
a distinguished mathematician and probabilist, told me that statistics was
a branch of mathematics, as in many senses it is, and we should therefore
be a part of the Department of Mathematics not an independent Depart-
ment. Fortunately we had many friends in the University who appreciated
our attempts to teach courses on statistical methods appropriate to their
students. They feared that this and the consultancy service would be lost if
we were administratively part of a mathematics department. These friends
convinced a reluctant Vice-Chancellor that we needed independence. He in-
sisted on the compromise that the title of the Department should be Applied
Statistics. A year or so later Harry Pitt told me that he now realized that
we were mathematicians by training and our interests and teaching covered
the underlying mathematics of our subject as well as its applications. We
could therefore drop ‘applied’ from our title. He was surprised but, I think,
content when I told him that we now liked the title of Applied Statistics ...’.
The interface between mathematics and statistics is interpreted in different
ways in different universities in the UK; all three of the obvious solutions –
separate departments, statistics within mathematics as a formal entity, statis-
tics treated as part of mathematics on a par with pure or applied – are found.

3. Ergodic theory (18).
Wiener’s interests were remarkably broad, and included ergodic theory, to
which he made several contributions (see e.g. Krengel (1985)), and through
him Pitt became interested in the area. In (18), he gave what Dunford de-
scribes (Mathematical Reviews MR0007947 (4,219h) as a new and elegant
proof of the Yosida-Kakutani maximal ergodic theorem. From this he derives
the Birkhoff-Khintchine almost-everywhere ergodic theorem, without use of
the mean ergodic theorem, and Wiener’s ergodic theorem in n dimensions
(Krengel (1985), 203). He also obtains the first random ergodic theorem.
For later work by Ulam and von Neumann and by Kakutani, see Kakutani
(1986), 364-378 and 445-6; for textbook accounts, see Halmos (1956), Kren-
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gel (1985), §8.2.3).

Books, etc.
1. Tauberian theorems (30).

This classic book is the first monograph exposition of Tauberian theorems.
As the author said, by 1958 the field had grown to the extent that one could
not cover it fully in a book of this length (174p.) Accordingly, Pitt limits
himself to ‘the topics and methods which follow most naturally from the work
of Hardy, Littlewood and Wiener; and my debt to them will be apparent.’
After a brief Intrduction, Chapter II deals with elementary Tauberian the-
orems, Chapter III with classical Tauberian theorems (special summability
methods – Cesàro, Abel, Borel etc.) and Chapter IV with Wiener theory.
Chapter V is on Mercerian theorems, regarded as a limiting case of Taube-
rian theorems (this remained the only textbook chapter on the subject until
Chapter 5 of Bingham et al. (1987)). Chapter VI is on Tauberian theorems
and the prime number theorem, as in (29).

The Lebesgue space L1 has the structure of a Banach algebra under con-
volution, and on taking Fourier transforms, one obtains a Banach algebra
under multiplication, in L∞. Wiener’s theorem shows that the presence or
absence of zeros in the Fourier transform is crucial, and presence of zeros is
preserved under multiplication (or of zeros in the transform, under convo-
lution). The ideal structure of the Banach algebra is thus relevant. One of
the first spectacular triumphs of modern functional analysis, as distinct from
classical analysis, was the exploitation of ideal structure in Banach algebras
to simplify and extend Wiener Tauberian theory. This was carried out by I.
M. Gel’fand in the 1940s, and also by R. Godement. For an early textbook
account, see Loomis (1953) (p.85: ‘As a corollary of this theorem we can
deduce the Wiener Tauberian theorem, but in a disguise which the reader
may find perfect’). Pitt refers to Gel’fand (and to S̆reider, though not to
Godement), but confines himself to the classical methods with which he had
himself worked.

2. Integration, measure and probability (31).
This brief book (110p.) deals with the three topics in the title, starting
from scratch. Unlike (30), which is unambiguously a research monograph,
the book reads like a student text. Part One is on integration and measure.
Chapter 1, on sets and set functions, is presented in modern notation and
terminology (in contrast to (15)). In Chapter 2, integration is developed
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first, and measure is deduced from it. This is the route followed by P. J.
Daniell in 1917-20, and later by Bourbaki, but it is not the usual route, and
Pitt does not discuss his reasons for choosing it. Chapter 3 includes Stieltjes
integrals and convolutions. Part Two is on probability. Chapter 4 gives a
measure-theoretic framework going as far as conditioning. Chapter 5 covers
convergence of random series, infinite divisibility and self-decomposability,
and the Poisson process.

3. Integration for use (32).
This book, also brief (143p.) is again a student text. In the first three chap-
ters, Pitt covers the basics of integration, including the Lebesgue theorems,
Fubini’s theorem and the Radon- Nikodým theorem. He again deals with
integration first and measure second. Chapter 4 is on geometric theory, in-
cluding the theorems of Gauss, Green and Stokes. Chapter 5 is on harmonic
analysis, and covers Fourier series and transforms, Fourier- Stieltjes trans-
forms and spectra. The final chapter gives a selection of topics on probability.

4. Obituary: John Charles Burkill (33).
J. C. Burkill (1900-1993, elected FRS 1953) was Pitt’s tutor and supervisor
at Peterhouse. In addition to his obvious debt to Hardy, Pitt acknowledged
a deep debt to Burkill; he was also influenced while at Cambridge by Little-
wood, Ingham and Besicovitch. His obituary of Burkill describes Burkill’s
life and work, and discusses his 27 papers and six books under six main head-
ings: integration and differentiation; functions of integrals and the Burkill
integral; derivatives of interval functions; the expression of area as an inte-
gral; approximate differentiation and extension of the Perron integral; other
topics.

Conclusion
Pitt’s output was unusual in that so much of it was done early, in or around
the year 1938 when the influence of his early mentors, Hardy and Wiener,
was still strong. His name is best known for Pitt’s form of Wiener’s theorem
(5). Pitt’s other most important papers include (2) (Pitt’s inequality), (9)
(the Wiener-Pitt(-S̆reider) phenomenon) and (18) (random ergodic theorem).
His book (30) served from its appearance in 1958 to that of Korevaar (2004)
as the only general monograph treatment of the very important subject of
Tauberian theorems. Pitt will also be remembered as the last grandmaster
of analysis from the Hardy-Littlewood school (Ingham, Offord, Burkill and
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Cartwright having predeceased him). He will be remembered in the univer-
sity world for his Vice-Chancellorship of Reading. His colleagues recall a
kind man who led by consensus.
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