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Abstract

The theory of orthogonal polynomials on the unit circle (OPUC) dates back
to Szegö’s work of 1915-21, and has been given a great impetus by the recent
work of Simon, in particular his two-volume book [Si4], [Si5], the survey pa-
per (or summary of the book) [Si3], and the book [Si9], whose title we allude
to in ours. Simon’s motivation comes from spectral theory and analysis. An-
other major area of application of OPUC comes from probability, statistics,
time series and prediction theory; see for instance the book by Grenander
and Szegö [GrSz]. Coming to the subject from this background, our aim here
is to complement [Si3] by giving some probabilistically motivated results. We
also advocate a new definition of long-range dependence.
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§1. Introduction
The subject of orthogonal polynomials on the real line (OPRL), at least

some of which forms part of the standard undergraduate curriculum, has
its roots in the mathematics of the 19th century. The name of Gabor
Szegö (1895-1985) is probably best remembered nowadays for two things:
co-authorship of ’Pólya and Szegö’ [PoSz] and authorship of ’Szegö’ [Sz4],
his book of 1938, still the standard work on OPRL. Perhaps the key result in
OPRL concerns the central role of the three-term recurrence relation ([Sz4],
III.3.2: ’Favard’s theorem’).

Much less well known is the subject of orthogonal polynomials on the unit
circle (OPUC), which dates from two papers of Szegö in 1920-21 ([Sz2], [Sz3]),
and to which the last chapter of [Sz4] is devoted. Again, the key is the appro-
priate three-term recurrence relation, the Szegö recursion or Durbin-Levinson
algorithm (§2). This involves a sequence of coefficients (not two sequences,
as with OPRL), the Verblunsky coefficients α = (αn) (§2), named (there are
several other names in use) and systematically exploited in the magisterial
two-volume book on OPUC ([Si4], [Si5]) by Barry Simon. See also his survey
paper [Si3], written from the point of view of analysis and spectral theory,
the survey [GoTo], and his recent book [Si9].

Complementary to this is our own viewpoint, which comes from proba-
bility and statistics, specifically time series (as does the excellent survey of
1986 by Bloomfield [Bl3]). Here we have a stochastic process (random phe-
nomenon unfolding with time) X = (Xn) with n integer (time discrete, as
here, corresponds to compactness of the unit circle by Fourier duality, whence
the relevance of OPUC; continuous time is also important, and corresponds
to OPRL).

We make a simplifying assumption, and restrict attention to the station-
ary case. The situation is then invariant under the shift n 7→ n + 1, which
makes available the powerful mathematical machinery of Beurling’s work on
invariant subspaces ([Beu]; [Nik1]). While this is very convenient mathemat-
ically, it is important to realize that this is both a strong restriction and one
unlikely to be satisfied exactly in practice. One of the great contributions
of the statistician and econometrician Sir Clive Granger (1934-2009) was to
demonstrate that statistical/econometric methods appropriate for station-
ary situations can, when applied indiscriminately to non-stationary situa-
tions, lead to misleading conclusions (via the well-known statistical problem
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of spurious regression). This has profound implications for macroeconomic
policy. Governments depend on statisticians and econometricians for advice
on interpretation of macroeconomic data. When this advice is misleading
and mistaken policy decisions are implemented, avoidable economic losses (in
terms of GDP) may result which are large-scale and permanent (cf. Japan’s
’lost decade’ in the 1990s, or lost two decades, and the global problems of
2007-8 on).

The mathematical machinery needed for OPUC is function theory on the
(unit) disc, specifically the theory of Hardy spaces and Beurling’s theorem
(factorization into inner and outer functions and Blaschke products). We
shall make free use of this, referring for what we need to standard works
(we recommend [Du], [Ho], [Gar], [Koo1], [Nik1], [Nik2]), but giving detailed
references. The theory on the disc (whose boundary the circle is compact)
corresponds analytically to the theory on the upper half-plane, whose bound-
ary the real line is non-compact (for which see e.g. [DymMcK]). Probabilis-
tically, we work on the disc in discrete time and the half-plane in continuous
time. In each case, what dominates is an integrability condition. In discrete
time, this is Szegö’s condition (Sz), or non-determinism (ND) – integrability
of the logarithm log w of the spectral density w (of µ) (§3). In continuous
time, this is the logarithmic integral, which gives its name to Koosis’ book
[Koo2].

In view of the above, the natural context in which to work is that of
complex-valued stochastic processes, rather than real-valued ones, in discrete
time. We remind the reader that here the Cauchy-Schwarz inequality tells
us that correlation coefficients lie in the unit disc, rather than the interval
[−1, 1].

The time-series aspects here go back at least as far as the work of Wiener
[Wi1] in 1932 on generalized harmonic analysis, GHA (which, incidentally,
contains a good historical account of the origins of spectral methods, e.g.
in the work of Sir Arthur Schuster in the 1890s on heliophysics). During
World War II, the linear filter (linearity is intimately linked with Gaussian-
ity) was developed independently by Wiener in the USA [Wi2], motivated by
problems of automatic fire control for anti-aircraft artillery, and Kolmogorov
in Russia (then USSR) [Kol]. This work was developed by the Ukrainian
mathematician M. G. Krein over the period 1945-1985 (see e.g. [Dym]), by
Wiener in the 1950s ([Wi3], IG, including commentaries) and by I. A. Ibrag-
imov (1968 on).

The subject of time series is of great practical importance (e.g. in econo-
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metrics), but suffered within statistics by being regarded as ’for experts only’.
This changed with the 1970 book by Box and Jenkins (see [BoxJeRe]), which
popularized the subject by presenting a simplified account (including an easy-
to-follow model-fitting and model-checking recipe), based on ARMA models
(AR for autoregressive, MA for moving average). The ARMA approach is
still important; see e.g. Brockwell and Davis [BroDav] for a modern textbook
account. The realization that the Verblunsky coefficients α of OPUC are ac-
tually the partial autocorrelation function (PACF) of time series opened the
way for the systematic exploitation of OPUC within time series by a number
of authors. These include Inoue, in a series of papers from 2000 on (see es-
pecially [In3] of 2008), and Inoue and Kasahara from 2004 on (see especially
[InKa2] of 2006).

Simon’s work ([Si3], [Si4], [Si5]) focusses largely on four conditions, two
weak (and comparable) and two strong (and non-comparable). Our aim
here is to complement the expository account in [Si3] by adding the time-
series viewpoint. This necessitates adding (at least) five new conditions.
Four of these (comparable) we regard as intermediate, the fifth as strong.
In our view, one needs three levels of strength here, not two. One is re-
minded of the Goldilocks principle (from the English children’s story: not
too hot/hard/high/..., not too cold/soft/low/..., but just right).

We begin in §2 by presenting the basics (Verblunsky’s theorem, PACF).
We turn in §3 to weak conditions (Szegö’s condition (Sz), or (ND); Szegö’s
theorem; α ∈ ℓ2; σ > 0). In §4 we look at our first strong condition, Baxter’s
condition (B), and Baxter’s theorem (α ∈ ℓ1). The satisfaction or otherwise
of Baxter’s condition (B) marks the transition between short- and long-range
dependence. The second strong condition, the strong Szegö condition (sSz),
follows in §5 (strong Szegö limit theorem, Ibragimov’s theorem, Golinskii-
Ibragimov theorem, Borodin-Okounkov formula; α ∈ H1/2), together with
a weakening of (sSz), absolute regularity. We turn in §6 to intermediate
conditions: in decreasing order of strength, (i) complete regularity; (ii) posi-
tive angle (Helson-Szegö, Helson-Sarason and Sarason theorems); (iii) (pure)
minimality (Kolmogorov); (iv) rigidity (Sarason), Levinson-McKean condi-
tion (LM), complete non-determinism (CND), intersection of past and future
(IPF); see [KaBi] for details. We close in §7 with some remarks.

The (weak) Szegö limit theorem dates from 1915 [Sz1], the strong Szegö
limit theorem from 1952 [Sz5]. Simon ([Si4], 11) rightly says how remark-
able it is for one person to have made major contributions to the same area
37 years apart. We note that Szegö’s remarkable longevity here is actually
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exceeded (over the 40 years 1945-1985) by that of the late, great Mark Grig-
orievich Krein (1907-1989).

What follows is a survey of this area, which contains (at least) eight dif-
ferent layers, of increasing (or decreasing) generality. This is an increase on
Simon’s (basic minimum of) four. We hope that no one will be deterred by
this increase in dimensionality, and so in apparent complexity. Our aim is the
precise opposite: to open up this fascinating area to a broader mathematical
public, including the time-series, probabilistic and statistical communities.
For this, one needs to open up the ‘grey zone’ between the strong and weak
conditions, and examine the third category, of intermediate conditions . We
focus on these three levels of generality. This largely reduces the effective di-
mensionality to three, which we feel simplifies matters. Mathematics should
be made as simple as possible, but not simpler (to adapt Einstein’s immortal
dictum about physics).

We close by quoting Barry Simon ([Si8], 85): ”It’s true that until Eu-
clidean Quantum Field Theory changed my tune, I tended to think of prob-
abilists as a priesthood who translated perfectly simple functional analytic
ideas into a strange language that merely confused the uninitiated.” He con-
tinues: in his 1974 book on Euclidean Quantum Field Theory, ”the dedication
says: ”To Ed Nelson who taught me how unnatural it is to view probability
theory as unnatural” ”.

§2. Verblunsky’s theorem and partial autocorrelation.
Let X = (Xn : n ∈ Z) be a discrete-time, zero-mean, (wide-sense) sta-

tionary stochastic process, with autocovariance function γ = (γn),

γn = E[XnX0]

(the variance is constant by stationarity, so we may take it as 1, and then
the autocovariance reduces to the autocorrelation).

Let H be the Hilbert space spanned by X = (Xn) in the L2-space of the
underlying probability space, with inner product (X, Y ) := E[XY ] and norm
∥X∥ := [E(|X|2)]1/2. Write T for the unit circle, the boundary of the unit
disc D, parametrised by z = eiθ; unspecified integrals are over T .

Theorem 1 (Kolmogorov Isomorphism Theorem). There is a process
Y on T with orthogonal increments and a probability measure µ on T with
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(i)

Xn =
∫

einθdY (θ);

(ii)
E[dY (θ)2] = dµ(θ).

(iii) The autocorrelation function γ then has the spectral representation

γn =
∫
e−inθdµ(θ).

(iv) One has the Kolmogorov isomorphism between H (the time domain) and
L2(µ) (the frequency domain) given by

Xt ↔ eit., (KIT )

for integer t (as time is discrete).

Proof. Parts (i), (ii) are the Cramér representation of 1942 ([Cra], [Do] X.4;
Cramér and Leadbetter [CraLea] §7.5). Part (iii), due originally to Herglotz
in 1911, follows from (i) and (ii)([Do] X.4, [BroDav] §4.3). Part (iv) is due
to Kolmogorov in 1941 [Kol]. All this rests on Stone’s theorem of 1932, giv-
ing the spectral representation of groups of unitary transformations of linear
operators on Hilbert space; see [Do] 636-7 for a historical account and refer-
ences (including work of Khintchine in 1934 in continuous time), [DunSch]
X.5 for background on spectral theory. //

The reader will observe the link between the Kolmogorov Isomorphism
Theorem and (ii), and its later counterpart from 1944, the Itô Isomorphism
Theorem and (dBt)

2 = dt in stochastic calculus.
To avoid trivialities, we suppose in what follows that µ is non-trivial –

has infinite support.
Since for integer t the eitθ span polynomials in eiθ, prediction theory for

stationary processes reduces to approximation by polynomials. This is the
classical approach to the main result of the subject, Szegö’s theorem (§2
below); see e.g. [GrSz], Ch. 3, [Ach], Addenda, B. We return to this in §7.7
below.

We write
dµ(θ) = w(θ)dθ/2π + dµs(θ),

6



so w is the spectral density (w.r.t. normalized Lebesgue measure) and µs is
the singular part of µ.

By stationarity,
E[XmXn] = γ|m−n|.

The Toeplitz matrix for X, or µ, or γ, is

Γ := (γij), where γij := γ|i−j|.

It is positive definite.
For n ∈ N , writeH[−n,−1] for the subspace ofH spanned by {X−n, . . . , X−1}

(the finite past at time 0 of length n), P[−n,−1] for projection onto H[−n,−1]

(thus P[−n,−1]X0 is the best linear predictor of X0 based on the finite past),
P⊥
[−n,−1] := I − P[−n,−1] for the orthogonal projection (thus P⊥

[−n,−1]X0 :=
X0 − P[−n,−1]X0 is the prediction error). We use a similar notation for pre-
diction based on the infinite past. Thus H(−∞,−∞] is the closed linear span
(cls) of Xk, k ≤ −1, P(−∞,−1] is the corresponding projection, and similarly
for other time-intervals. Write

Hn := H(−∞,n]

for the (subspace generated by) the past up to time n,

H−∞ :=
∞∩

n=−∞
Hn

for their intersection, the (subspace generated by) the remote past. With

corr(Y, Z) := E[Y Z]/
√
E[|Y |2].E[|Z|2] for Y, Z zero-mean and not a.s. 0,

write also
αn := corr(Xn − P[1,n−1]Xn, X0 − P[1,n−1]X0)

for the correlation between the residuals at times 0, n resulting from (linear)
regression on the intermediate values X1, . . . , Xn−1. The sequence

α = (αn)
∞
n=1

is called the partial autocorrelation function (PACF). It is also called the
sequence of Verblunsky coefficients, for reasons which will emerge below.

Theorem 2 (Verblunsky’s Theorem. There is a bijection between the
sequences α = (αn) with each αn ∈ D and the probability measures µ on T .
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This result dates from Verblunsky in 1936 [V2], in connection with OPUC.
It was re-discovered long afterwards by Barndorff-Nielsen and Schou [BarN-S]
in 1973 and Ramsey [Ram] in 1974, both in connection with parametrization
of time-series models in statistics. The Verblunsky bijection has the great
advantage to statisticians of giving an unrestricted parametrization: the only
restrictions on the αn are the obvious ones resulting from their being corre-
lations – |αn| ≤ 1, or as µ is non-trivial, |αn| < 1. By contrast, γ = (γn)
gives a restricted parametrization, in that the possible values of γn are re-
stricted by the inequalities of positive-definiteness (principal minors of the
Toeplitz matrix Γ are positive). This partly motivates the detailed study of
the PACF in, e.g., [In1], [In2], [In3], [InKa1], [InKa2]. For general statistical
background on partial autocorrelation, see e.g. [KenSt], Ch. 27 (Vol. 2),
§46.26-28 (Vol. 3).

As we mentioned in §1, the basic result for OPUC corresponding to
Favard’s theorem for OPRL is Szegö’s recurrence (or recursion): given a
probability measure µ on T , let Φn be the monic orthogonal polynomials
they generate (by Gram-Schmidt orthogonalization). For every polynomial
Qn of degree n, write

Q∗
n(z) := znQn(1/z̄)

for the reversed polynomial. Then the Szegö recursion is

Φn+1(z) = zΦn(z)− ᾱn+1Φ
∗
n(z),

where the parameters αn lie in D:

|αn| < 1,

and are the Verblunsky coefficients (also known variously as the Szegö, Schur,
Geronimus and reflection coefficients; see [Si4], §1.1). The double use of the
name Verblunsky coefficients and the notation α = (αn) for the PACF and
the coefficients is justified: the two coincide. Indeed, the Szegö recursion is
known in the time-series literature as the Durbin- Levinson algorithm; see e.g.
[BroDav], §§3.4, 5.2. The term Verblunsky coefficient is from Simon [Si4], to
which we refer repeatedly. We stress that Simon writes αn for our αn+1, and
so has n = 0, 1, . . . where we have n = 1, 2, . . .. Our notational convention is
already established in the time-series literature (see e.g. [BroDav], §§3.4, 5.2),
and is more convenient in our context of the PACF, where n = 1, 2, . . . has the
direct interpretation as a time-lag between past and future (cf. [Si4], (1.5.15),
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p. 56-57). See [Si4], §1.5 and (for two proofs of Verblunsky’s theorem)
§1.7, 3.1, and [McLZ] for a recent application of the unrestricted PACF
parametrization.

One may partially summarize the distributional aspects of Theorems 1
and 2 by the one-one correspondences

α ↔ µ ↔ γ.

The Durbin-Levinson algorithm
Write

X̂n+1 := ϕn1Xn + . . .+ ϕnnX1

for the best linear predictor of Xn+1 given Xn, . . . , X1,

vn := E[(Xn+1 − X̂n+1)
2] = E[(Xn+1 − P[1,n]Xn+1)

2]

for the mean-square error in the prediction of Xn+1 based on X1, . . . , Xn,

ϕn := (ϕn1, . . . , ϕnn)
T (fpc)

for the vector of finite-predictor coefficients. The Durbin-Levinson algorithm
([Lev], [Dur]; [BroDav] §5.2, [Pou] §7.2) gives the ϕn+1, vn+1 recursively, in
terms of quantities known at time n, as follows:
(i) The first component of ϕn+1 is given by

ϕn+1,n+1 = [γn+1 −
n∑

j=1

ϕnjγn−j]/vn.

The ϕnn are the Verblunsky coefficients αn:

ϕnn = αn.

(ii) The remaining components are given by ϕn+1,1
...

ϕn+1,n

 =

 ϕn1
...

ϕnn

− ϕn+1,n+1

ϕnn
...

ϕn1

 =

 ϕn1
...

ϕnn

− αn+1

ϕnn
...

ϕn1

 .

(iii) The prediction errors are given recursively by

v0 = 1, vn+1 = vn[1− |ϕn+1,n+1|2] = vn[1− |αn+1|2].
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In particular, vn > 0 and we have from (ii) that

ϕnj − ϕn+1,j = αn+1ϕn,n+1−j. (DL).

Since by (iii)

vn =
n∏

j=1

[1− |αn|2],

the n-step prediction error variance vn → σ2 > 0 iff the infinite product
converges, that is, α ∈ ℓ2, an important condition that we will meet in §3
below in connection with Szegö’s condition.
Note. 1. The Durbin-Levinson algorithm is related to the Yule-Walker equa-
tions of time-series analysis (see e.g. [BroDav], §8.1), but avoids the need
there for matrix inversion.
2. The computational complexity of the Durbin-Levinson algorithm grows
quadratically, rather than cubically as one might expect; see e.g. Golub and
van Loan [GolvL], §4.7. Its good numerical properties result from efficient
use of the Toeplitz character of the matrix Γ (or equivalently, of Szegö re-
cursion).
3. See [KatSeTe] for a recent approach to the Durbin-Levinson algorithm,
and [Deg] for the multivariate case.

Stochastic versus non-stochastic
This paper studies prediction theory for stationary stochastic processes.

As an extreme example (in which no prediction is possible), take the ‘free’
case, in which the Xn are independent (and identically distributed). Then
dµ(θ) = dθ/2π, γn = δn0, αn ≡ 0, Φn(z) = zn ([Si4], Ex. 1.6.1).

In contrast to this is the situation where X = (Xn) is non-stochastic –
deterministic, but (typically) chaotic. This case often arises in non-linear
time-series analysis and dynamical systems; for a monograph treatment, see
Kantz and Schreiber [KanSch].

One natural way to classify results on OPUC is by the strength of the
conditions that they impose. Simon’s book discusses a range of conditions,
starting with a fairly weak one, Szegö’s condition ([Si4] Ch. 2 and §3 below),
and proceeding to two principal stronger ones, Baxter’s condition ([Si4] Ch.
5 and §4 below) and the strong Szegö condition ([Si4] Ch. 6 and §5 below).
From a probabilistic viewpoint, equally important are a range of intermedi-
ate conditions not discussed in Simon’s book. These we discuss in §6. We
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close with some remarks in §7.

§3. Weak conditions: Szegö’s theorem.

Rakhmanov’s Theorem
One naturally expects that the influence of the distant past decays with

increasing lapse of time. So one wants to know when

αn → 0 (n → ∞).

By Rakhmanov’s theorem ([Rak]; [Si5] Ch 9, and Notes to §9.1, [MatNeTo]),
this happens if the density w of the absolutely continuous component µa is
positive on a set of full measure:

|{θ : w(θ) > 0}| = 1

(using normalized Lebesgue measure – or 2π using Lebesgue measure).

Non-determinism and the Wold decomposition.
Write σ2 for the one-step mean-square prediction error:

σ2 := E[(X0 − P(−∞,−1]X0)
2];

by stationarity, this is the σ2 = limn→∞ vn above. Call X non-deterministic
(ND) if σ > 0, deterministic if σ = 0. (This usage is suggested by the usual
one of non-randomness being zero-variance, though here a non-deterministic
process may be random, but independent of time, so the stochastic process
reduces to a random variable.) The Wold decomposition (von Neumann [vN]
in 1929, Wold [Wo] in 1938; see e.g. Doob [Do], XII.4, Hannan [Ha1], Ch.
III) expresses a process X as the sum of a non-deterministic process U and
a deterministic process V :

Xn = Un + Vn;

the process U is a moving average,

Un =
n∑

j=−∞
mn−jξj =

∞∑
k=0

mkξn−k,

with the ξj zero-mean and uncorrelated, with each other and with V ; E[ξn] =
0, var(ξn) = E[ξ2n] = σ2. Thus when σ = 0 the ξn are 0, U is missing and the
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process is deterministic. When σ > 0, the spectral measures of Un, Vn are
µac and µs, the absolutely continuous and singular components of µ. Think
of ξn as the ‘innovation’ at time n – the new random input, a measure of
the unpredictability of the present from the past. This is only present when
σ > 0; when σ = 0, the present is determined by the past – even by the
remote past.

The Wold decomposition arises in operator theory ([vN]; Sz.-Nagy and
Foias in 1970 [SzNF], Rosenblum and Rovnyak in 1985 [RoRo], §1.3, [Nik2]),
as a decomposition into the unitary and completely non-unitary (cnu) parts.

Szegö’s Theorem

Theorem 3 (Szegö’s Theorem).
(i) σ > 0 iff logw ∈ L1, that is,∫

− logw(θ)dθ > −∞. (Sz)

(ii) σ > 0 iff α ∈ ℓ2.
(iii)

σ2 =
∏∞

1
(1− |αn|2),

so σ > 0 iff the product converges, i.e. iff∑
|αn|2 < ∞ : α ∈ ℓ2;

(iv) σ2 is the geometric mean G(µ) of µ:

σ2 = exp(
1

2π

∫
logw(θ)dθ) =: G(µ) > 0. (K)

Proof. Parts (i), (ii) are due to Szegö [Sz2], [Sz3] in 1920-21, with µ abso-
lutely continuous, and to Verblunsky [V2] in 1936 for general µ. See [Si4]
Ch. 2, [Si9] Ch. 2. Parts (iii) and (iv) are due to Kolmogorov in 1941 [Kol].
Thus (K) is called Kolmogorov’s formula. The alternative name for Szegö’s
condition (Sz) is the non-determinism condition (ND), above. //

We now restrict attention to processes for which Szegö’s condition holds;
indeed, we shall move below to stronger conditions.

The original motivation of Szegö, and later Verblunsky, was approxima-
tion theory, specifically approximation by polynomials. The Kolmogorov
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Isomorphism Theorem allows us to pass between finite sections of the past
to polynomials; denseness of polynomials allows prediction with zero error (a
‘bad’ situation – determinism), which happens iff (Sz) does not hold. There
is a detailed account of the (rather involved) history here in [Si4] §2.3. Other
classic contributions include work of Krein in 1945, Levinson in 1947 [Lev]
and Wiener in 1949 [Wi2]. See [BroDav] §5.8 (where un-normalized Lebesgue
measure is used, so there is an extra factor of 2π on the right of (K)), [Roz]
§II.5 from the point of view of time series, [Si4] for OPUC.

Pure non-determinism, (PND
When the remote past is trivial,

H−∞ :=
∞∩

n=−∞
Hn = {0}, (PND)

there is no deterministic component in the Wold decomposition, and no sin-
gular component in the spectral measure. The process is then called purely
non-deterministic. Thus

(PND) = (ND)+(µs = 0) = (Sz)+(µs = 0) = (σ > 0)+(µs = 0) (PND)

(usage differs here: the term ‘regular’ is used for (PND) in [IbRo], IV.1, but
for (ND) in [Do], XII.2).

The Szegö function and Hardy spaces
Szegö’s theorem is the key result in the whole area, and to explore it

further we need the Szegö function (h, below). For this, we need the language
and viewpoint of the theory of Hardy spaces, and some of its standard results;
several good textbook accounts are cited in §1. For 0 < p < ∞, the Hardy
space Hp is the class of analytic functions f on D for which

supr<1

( 1

2π

∫ 2π

0
|f(reiθ|pdθ

)1/p
< ∞. (Hp)

As well as in time series and prediction, as here, Hardy spaces are crucial
for martingale theory (see e.g. [Bin1] and the references there). For an
entertaining insight into Hardy spaces in probability, see Diaconis [Dia].

For non-deterministic processes, define the Szegö function h by

h(z) := exp
( 1

4π

∫ (eiθ + z

eiθ − z

)
logw(θ)dθ

)
(z ∈ D), (OF )
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(note that in [In1-3], [InKa1,2], [Roz] II.5 an extra factor
√
2π is used on the

right), or equivalently

H(z) := h2(z) = exp
( 1

2π

∫ (eiθ + z

eiθ − z

)
logw(θ)dθ

)
(z ∈ D).

Because logw ∈ L1 by (Sz), H is an outer function for H1 (whence the name
(OF ) above); see Duren [Du], §2.4. By Beurling’s canonical factorization
theorem,
(i) H ∈ H1, the Hardy space of order 1 ([Du], §2.4), or as H = h2, h ∈ H2.
(ii) The radial limit

H(eiθ) := lim
r↑1

H(reiθ)

exists a.e., and
|H(eiθ)| = |h(eiθ)|2 = w(θ)

(thus h may be regarded as an ‘analytic square root’ of w). See also Hoffman
[Ho], Ch. 3-5, Rudin [Ru], Ch. 17, Helson [He], Ch. 4.

Kolmogorov’s formula now reads

σ2 = m2
0 = h(0)2 = G(µ) = exp(

1

2π

∫
logw(θ)dθ). (K)

When σ > 0, the Maclaurin coefficients m = (mn) of the Szegö function h(z)
are the moving-average coefficients of the Wold decomposition (recall that
the moving-average component does not appear when σ = 0); see Inoue [In3]
and below. When σ > 0, m ∈ ℓ2 is equivalent to convergence in mean square
of the moving-average sum

∑∞
j=0 mn−jξj in the Wold decomposition. This is

standard theory for orthogonal expansions; see e.g. [Do], IV.4. Note that a
function being in H2 and its Maclaurin coefficients being in ℓ2 are equivalent
by general Hardy-space theory; see e.g. [Ru], 17.10 (see also Th. 17.17 for
factorization), [Du] §1.4, 2.4, [Z2], VII.7.

Simon [Si4], §2.8 – ‘Lots of equivalences’ – gives Szegö’s theorem in two
parts. One ([Si4] Th. 2.7.14) gives twelve equivalences, the other ([Si4], Th.
2.7.15) gives fifteen; the selection of material is motivated by spectral theory
[Si5]. Theorem 3 above extends these lists of equivalences, and treats the
material from the point of view of probability theory. (It does not, however,
give a condition on the autocorrelation γ = (γn) equivalent to (Sz); this is
one of the outstanding problems of the area.)

The contrast here with Verblunsky’s theorem is striking. In general, one
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has unrestricted parametrization: all values |αn| are possible, for all n. But
under Szegö’s condition, one has α ∈ ℓ2, and in particular αn → 0, as in
Rakhmanov’s theorem. Thus non-deterministic processes fill out only a tiny
part of the α-parameter space D∞. One may regard this as showing that the
remote past, trivial under (Sz), has a rich structure in general, as follows:

Szegö’s alternative (or dichotomy).
One either has

logw ∈ L1 and H−∞ ̸= H−n ̸= H

or

logw /∈ L1 and H−∞ = H−n = H.

In the former case, α occupies a tiny part ℓ2 of D∞, and the remote past
H−∞ is identified with L2(µs). This is trivial iff µs = 0; cf. (PND). In the
second case, α occupies all of D∞, and the remote past is the whole space.

Szegö’s dichotomy may be interpreted by analogy with physical systems.
Some systems (typically, liquids and gases) are ’loose’ – left alone, they will
thermalize, and tend to an equilibrium in which the details of the past history
are forgotten. By contrast, some systems (typically, solids) are ’tight’: for
example, in tempered steel, the thermal history is locked in permanently by
the tempering process. Long memory is also important in economics and
econometrics; for background here, see e.g. [Rob], [TeKi].
Note. 1. Our h is the Szegö function D of Simon [Si4], (2.4.2), and −1/h
(see below) its negative reciprocal −∆ [Si4], (2.2.92):

h = D, −1/h = −∆

(we use both notations to facilitate comparison between [In1-3], [InKa1,2],
which use h, to within the factor

√
2π mentioned above, and [Si4], our refer-

ence on OPUC, which uses D).
2. Both h and −1/h are analytic and non-vanishing in D. See [Si4], Th.
2.2.14 (for −1/h, or ∆), Th. 2.4.1 (for h, or D).
3. That (Sz) implies h = D is in the unit ball of H2 is in [Si4], Th. 2.4.1.
4. See de Branges and Rovnyak [dBR] for general properties of such square-
summable power series.
5. Our autocorrelation γ is Simon’s c (he calls our γn, or his cn, the moments
of µ: [Si4], (1.1.20)). Our moving-average coefficients m = (mn) have no
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counterpart in [Si4], and nor do the autoregressive coefficients r = (rn) or
minimality (see below for these). We will also need the Fourier coefficients of
logw, known for reasons explained below as the cepstrum), which we write
as L = (Ln) (’L for logarithm’: Simon’s L̂n [Si4], (6.1.13)), and a sequence
b = (bn), the phase coefficients (Fourier coefficients of h̄/h).
6. Lund et al. [LuZhKi] give several properties – monotonicity, convexity
etc. – which one of m, γ has iff the other has.

MA(∞) and AR(∞)
The power series expansion

h(z) =
∞∑
n=0

mnz
n (z ∈ D)

generates the MA(∞) coefficients m = (mn) in the Wold decomposition.
That of

−1/h(z) =
∞∑
n=0

rnz
n (z ∈ D)

generates the AR(∞) coefficients r = (rn) in the (infinite-order) autoregres-
sion

n∑
j=−∞

rn−jXj + ξn = 0 (n ∈ Z). (AR)

See [InKa2] §2, [In3] for background.
One may thus extend the above list of one-one correspondences, as follows:

Under (Sz), α, µ, γ ↔ m = (mn) ↔ h,−1/h ↔ r = (rn).

Finite and infinite predictor coefficients.
We met the n-vector ϕn of finite-predictor coefficients in (fpc) of §1; we

can extend it to an infinite vector, still denoted ϕn, by adding zeros. The
corresponding vector ϕ := (ϕ1, ϕ2, . . .) of infinite-predictor coefficients gives
the infinite predictor

P(−∞,−1]X0 =
∞∑
j=1

ϕjX−j (ipc)

([InKa2], (1.4)). One would expect convergence of finite-predictor to infinite-
predictor coefficients; under Szegö’s condition, one has such convergence in
ℓ2 iff (PND), i.e., µs = 0:

ϕn → ϕ in ℓ2 ⇔ (PND)
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(Pourahmadi [Pou], Th. 7.14).

The Szegö limit theorem.
With G(µ) as above, write Tn (or Tn(γ), or Tn(µ)) for the n× n Toeplitz

matrix Γ(n) with elements
Γ
(n)
ij := cj−i

obtained by truncation of the Toeplitz matrix Γ (cf. [BotSi2]). Szegö’s limit
theorem states that, under (Sz), its determinant satisfies

1

n
log det Tn → G(µ) (n → ∞)

(note that (Sz) is needed for the right to be defined). A stronger statement
– Szegö’s strong limit theorem – holds; we defer this till §5.

The Szegö limit theorem is used in the Whittle estimator of time-series
analysis; see e.g. Whittle [Wh], Hannan [Ha2].

Phase coefficients.
When the Szegö condition (Sz) holds, the Szegö function h(z) =

∑∞
0 mnz

n

is defined. We can then define the phase function h̄/h, so called because it
has unit modulus and depends only on the phase or argument of h (Peller
[Pel], §8.5). Its Fourier coefficients bn are called the phase coefficients. They
are given in terms of m = (mn) and r = (rn) by

bn :=
∞∑
0

mkrn+k (n = 0, 1, 2, . . .). (b)

The role of the phase coefficients is developed in [BiInKa]. They are impor-
tant in connection with rigidity (§6 below), and Hankel operators [Pel].

Rajchman measures.
In the Gaussian case, mixing in the sense of ergodic theory holds iff

γn → 0 (n → ∞)

([CorFoSi], §14.2, Th. 2). Since (Sz) is γ ∈ ℓ2, which implies γn → 0, this
is even weaker than (Sz). Measures for which this condition holds are called
Rajchman measures (they were studied by A. Rajchman in the 1920s). Here
the continuous singular part µcs of µ is decisive; for a characterization of
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Rajchman measures, see Lyons ([Ly1] – [Ly3] and the appendix to [KahSa]).

ARMA(p, q).
The Box-Jenkins ARMA(p, q) methodology ([BoxJeRe], [BroDav]: au-

toregressive of order p, moving average of order q – see §6.3 for MA(q))
applies to stationary time series where the roots of the relevant polynomials
lie in the unit disk (see e.g. [BroDav] §3.1). The limiting case, of unit roots,
involves non-stationarity, and so the statistical dangers of spurious regression
(§1); cf. Robinson [Rob], p.2. We shall meet other instances of unit-root phe-
nomena later (§6.3).

Szegö’s theorem and the Gibbs Variational Principle
We point out that Verblunsky [V2] proved the Gibbs Variational Princi-

ple, one of the cornerstones of nineteenth-century statistical mechanics, for
the Szegö integral:

infg[
∫

egdµ/ exp(
∫

gdθ/2π)] = exp[
∫
logw(θ)dθ/2π].

For details, see e.g. Simon [Si9] §§2.2, 10.6, [Si10], Ch. 16, 17. For back-
ground on the Gibbs Variational Principle, see e.g. Simon [Si1], III.4, Georgii
[Geo], 15.4, Ellis [Ell], III.8.

§4. Strong conditions: Baxter’s theorem

The next result ([Bax1], [Bax2], [Bax3]; [Si4], Ch. 5) gives the first of our
strong conditions.

Theorem 4 (Baxter’s theorem). The following are equivalent:
(i) the Verblunsky coefficients (or PACF) are summable,

α ∈ ℓ1; (B)

(ii) the autocorrelations are summable, γ ∈ ℓ1, and µ is absolutely continuous
with continuous positive density:

minθw(θ) > 0.

Of course, (γn) summable gives, as the γn are the Fourier coefficients of
µ, that µ is absolutely continuous with continuous density w; thus w > 0
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iff inf w = minw > 0.) We extend this list of equivalences, and bring out
its probabilistic significance, in Theorem 5 below on ℓ1 (this is substantially
Theorem 4.1 of [In3]). We call α ∈ ℓ1 (or any of the other equivalences in
Theorem 4) Baxter’s condition (whence (B) above). Since ℓ1 ⊂ ℓ2, Baxter’s
condition (B) (‘strong’) implies Szegö’s condition (Sz) (‘weak’).

Theorem 5 (Inoue). For a stationary process X, the following are equiva-
lent:
(i) Baxter’s condition (B) holds: α ∈ ℓ1.
(ii) γ ∈ ℓ1, µs = 0 and the spectral density w is continuous and positive.
(iii) (PND) (that is, (Sz)/(ND) + µs = 0) holds, and the moving-average
and autoregressive coefficients are summable:

m ∈ ℓ1, r ∈ ℓ1.

(iv) m ∈ ℓ1, µs = 0 and the spectral density w is continuous and positive.
(v) r ∈ ℓ1, µs = 0 and the spectral density w is continuous and positive.

Proof.
(i) ⇔ (ii). This is Baxter’s theorem, as above.
(iii) ⇒ (iv), (v). By (PND), (Sz) holds, so the non-tangential limit

h(eiθ) = lim
r↑1

h(reiθ) =
∞∑
n=0

mne
inθ

exists a.e. But as m ∈ ℓ1, h(e
iθ) is continuous, so this holds everywhere.

Since

w(θ) = |h(eiθ)|2 = |D(eiθ)|2 = |
∞∑
n=0

mne
inθ|2,

w is continuous. Letting r ↑ 1 in

h(z)(−1/h(z)) = (
∞∑
0

mnr
neinθ)(

∞∑
0

rnr
neinθ) = −1

gives similarly

(
∞∑
0

mne
inθ)(

∞∑
0

rne
inθ) = −1.

So h(eiθ) has no zeros, so neither does w. That is, (iv), (v) hold.
(iv) ⇒ (iii). As w is positive and continuous, w is bounded away from 0 and
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∞. So 1/w is also. So

1/w(θ) = |1/h(eiθ)|2 = |∆(eiθ)|2 = |
∞∑
n=0

rne
inθ|2,

where ∆ = 1/D. (See [Si4], Th. 2.2.14, 2.7.15: the condition λ∞(.) > 0
there is (Sz), so holds here.) By Wiener’s theorem, the reciprocal of a non-
vanishing absolutely convergent Fourier series is an absolutely convergent
Fourier series (see e.g. [Ru], Th. 18.21). So from m ∈ ℓ1 we obtain r ∈ ℓ1,
whence (iii) (cf. [Berk], p.493).
(v) ⇒ (iii). This follows as above, by Wiener’s theorem again.
(iv) ⇒ (ii). From the MA(∞) representation,

γn =
∞∑
k=0

m|n|+kmk (n ∈ Z) (conv)

([InKa2], (2.21)). So as ℓ1 is closed under convolution, m ∈ ℓ1 implies γ ∈ ℓ1,
indeed with

∥γ∥1 ≤ ∥m∥21,

giving (ii).
(ii) ⇒ (v). We have

ϕj = c0rj = σrj

with ϕj the infinite-predictor coefficients ([InKa2], (3.1)). Then r ∈ ℓ1 fol-
lows by the Wiener-Lévy theorem, as in Baxter [Ba3], 139-140. //

Note. 1. Under Baxter’s condition, both |h| and |1/h| (or |D| and |∆| =
|1/D|) are continuous and positive on the unit circle. As h, 1/h are analytic in
the disk, and so attain their maximum modulus on the circle by the maximum
principle,

inf
D

|h(.)| > 0, inf
D

|1/h(.)| > 0

(and similarly for D(.), ∆); [Si4], (5.2.3), (5.2.4).
2. The hard part of Baxter’s theorem is (ii) ⇒ (i), as Simon points out ([Si4],
314).
3. Simon [Si4], Th. 5.2.2 gives twelve equivalences in his final form of Bax-
ter’s theorem. (He does not, however, deal explicitly with m and r.)
4. Simon also gives a more general form, in terms of Beurling weights, ν.
The relevant Banach algebras contain the Wiener algebra used above as the
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special case ν = 1.
5. The approach of [Si4], §5.1 is via truncated Toeplitz matrices and their
inverses. The method derives, through Baxter’s work, from the Wiener-Hopf
technique. This point of view is developed at length in [BotSi1], [BotSi2].
Baxter’s motivation was approximation to infinite-past predictors by finite-
past predictors.

Long-range dependence
In various physical models, the property of long-range dependence (LRD)

is important, particularly in connection with phase transitions (see e.g. [Si1],
Ch. II, [Gri1], Ch. 9, [Gri2], Ch. 5), to which we return below. This is a
spatial property, but applies also in time rather than space, when the term
used is long memory. A good survey of long-memory processes was given by
Cox [Cox] in 1984, and a monograph treatment by Beran [Ber] in 1994. For
more recent work, see [DouOpTa], [Rob], [Gao] Ch. 6, [TeKi], [GiKoSu].

Baxter’s theorem is relevant to the definition of LRD recently proposed
independently by Debowski [Deb] and Inoue [In3]: long-range dependence,
or long memory, is non-summability of the PACF:

X has LRD iff α /∈ ℓ1. (DI)

While the broad concept of long memory, or LRD, has long been widely
accepted, authors differed over the precise definition. There were two leading
candidates:
(i) LRD is non-summability of covariances, γ /∈ ℓ1.
(ii) LRD is covariance decaying like a power: γn ∼ c/n1−2d as n → ∞, for
some parameter d ∈ (0, 1/2) (d for differencing – see below) and constant
c ∈ (0,∞) (and so

∑
γn = ∞).

Note. 1. In place of (ii), one may require w(θ) ∼ C/θ2d as θ ↓ 0, for some
constant C ∈ (0,∞). The constants here may be replaced by slowly varying
functions. See e.g. [BinGT] §4.10 for relations between regular variation of
Fourier series and Fourier coefficients.
2. One often encounters, instead of d ∈ (0, 1/2), a parameter H = d + 1

2
∈

(1/2, 1). This H is the Hurst parameter, named after the classic studies by
the hydrologist Hurst of water flows in the Nile; see [Ber], Ch. 2.
3. For d ∈ (0, 1

2
), ℓ(.) slowly varying, the following class of prototypical long-

memory examples is considered in [InKa2], §2.3 (see also [In1], Th. 5.1):

γn ∼ ℓ(n)2B(d, 1− 2d)/n1−2d,

21



mn ∼ ℓ(n)/n1−d,

rn ∼ d sin(πd)

π
.

1

ℓ(n)
.1/n1+d.

See the sources cited for inter-relationships between these.
4. In [InKa2], Example 2.6, the class of FARIMA(p, d, q) processes is con-
sidered (obtained from an ARIMA(p, q) process by fractional differencing of
order d – see [Hos], [BroDav], [KokTa]). For d ∈ (0, 1/2) these have long
memory; for d = 0 they reduce to the familiar ARMA(p, q) processes.

Li ([Li], §3.4) has recently given a related but different definition of long
memory; we return to this in §5 below.

5. Strong conditions: the strong Szegö theorem

The work of this section may be motivated by work from two areas of
physics.

1. The cepstrum.
During the Cold War, the problem of determining the signature of the

underground explosion in a nuclear weapon test, and distinguuishing it from
that of an earthquake, was very important, and was studied by the American
statistician J. W. Tukey and collaborators. Write L = (Ln), where the Ln

are the Fourier coefficients of logw, the log spectral density:

Ln :=
∫

logw(θ)einθdθ/2π.

Thus exp(L0) is the geometric mean G(µ). The sequence L is called the
cepstrum, Ln the ceptstral coefficients (Simon’s notation here is L̂n; [Si4],
(2.1.14), (6.1.11)); see e.g. [OpSc], Ch. 12. The terminology dates from
work of Bogert, Healy and Tukey of 1963 on echo detection [BogHeTu]; see
McCullagh [McC], Brillinger [Bri] (the term is chosen to suggest both echo
and spectrum, by reversing the first half of the word spectrum; it is accord-
ingly pronounced with the c hard, like a k).

2. The strong Szegö limit theorem.
This (which gives the weak form on taking logarithms) states (in its

present form, due to Ibragimov) that

det Tn

G(µ)n
→ E(µ) := exp{

∞∑
1

kL2
k)} (n → ∞)
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(of course the sum here must converge; it turns out that this form is best-
possible: the result is valid whenever it makes sense ([Si4], 337).

The motivation was Onsager’s work in the two-dimensional Ising model,
and in particular Onsager’s formula, giving the existence of a critical tem-
parature Tc and the decay of the magnetization as the temperature T ↑ Tc;
see [BotSi2] §5.1, [Si1] II.6, [McCW]. The mechanism was a question by On-
sager (c. 1950) to his Yale colleague Kakutani, who asked Szegö ([Si4], 331).

Write H1/2 for the subspace of ℓ2 of sequences a = (an) with

∥a∥2 :=
∑
n

(1 + |n|)|αn|2 < ∞ (H1/2)

(the function of the ‘1’ on the right is to give a norm; without it, ∥.∥ van-
ishes on the constant functions). This is a Sobolev space ([Si4], 329, 337; it

is also a Besov space, whence the alternative notation B
1/2
2 ; see e.g. Peller

[Pel], Appendix 2.6 and §7.13). This is the space that plays the role here
of ℓ2 in §2 and ℓ1 in §3. Note first that, although ℓ1 and H1/2 are close
in that a sequence (nc) of powers belongs to both or neither, neither con-
tains the other (consider an = 1/(n log n), an = 1/

√
n if n = 2k, 0 otherwise).

Theorem 6 (Strong Szegö Theorem).
(i) If (PND) holds (i.e. (Sz) = (ND) holds and µs = 0), then

E(µ) =
∞∏
j=1

(1− |αj|2)−j = exp
( ∞∑
n=1

nL2
n)

(all three may be infinite), with the infinite product converging iff the strong
Szegö condition

α ∈ H1/2, (sSz)

holds.
(ii) (sSz) holds iff

L ∈ H1/2 (sSz′)

holds.
(iii) Under (Sz), finiteness of any (all three) of the expressions in (i) forces
µs = 0.

Proof. Part (i) is due to Ibragimov ([Si4], Th. 6.1.1), and (ii) is immediate
from this. Part (iii) is due to Golinski and Ibragimov ([Si4], Th. 6.1.2; cf.
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[Si2]). //

Part of Ibragimov’s theorem was recently obtained independently by Li
[Li], under the term reflectrum identity (so called because it links the Verblun-
sky or reflection coefficients with the cepstrum), based on information theory
– mutual information between past and future. Earlier, Li and Xie [LiXi] had
shown the following:
(i) a process with given autocorrelations γ0, . . . , γp with minimal information
between past and future must be an autoregressive model AR(p) of order p;
(ii) a process with given cepstral coefficients L0, . . . , Lp with minimal in-
formation between past and future must be a Bloomfield model BL(p) of
order p ([Bl1], [Bl2]), that is, one with spectral density w(θ) = exp{L0 +
2
∑p

k=1 Lk cos kθ}.
Another approach to the strong Szegö limit theorem, due to Kac [Kac],

uses the conditions

inf w(.) > 0, γ = (γn) ∈ ℓ1, γ ∈ H1/2

(recall that ℓ1 and H1/2 are not comparable). This proof, from 1954, is linked
to probability theory – Spitzer’s identity of 1956, and hence to fluctuation
theory for random walks, for which see e.g. [Ch], Ch. 8.

The Borodin-Okounkov formula.
This turns the strong Szegö limit theorem above from analysis to algebra

by identifying the quotient on the left there as a determinant which visibly
tends to 1 as n → ∞ [BorOk]; see [Si4] §6.2. (It was published in 2000,
having been previously obtained by Geronimo and Case [GerCa] in 1979; see
[Si4] 337, 344, [Bot] for background here.) In terms of operator theory and
in Widom’s notation [Bot], the result is

det Tn(a)

G(a)n
=

det(I −QnH(b)H(c̃)Qn)

det(I −H(b)H(c̃))
,

for a a sufficiently smooth function without zeros on the unit circle and with
winding number 0. Then a has a Wiener-Hopf factorization a = a−a+; b :=
a−a

−1
+ , c := a−1

− a+; H(b), H(c̃) are the Hankel matrices H(b) = (bj+k+1)
∞
j,k=0,

H(c̃) = (c−j−k−1)
∞
j,k=0, and Qn is the orthogonal projection of ℓ2(1, 2, . . .)

onto ℓ2({n, n+ 1, . . .}). By Widom’s formula,

1/det(I −H(b)H(c̃)) = exp{
∞∑
k=1

kL2
k} =: E(a)
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(see e.g. [Si4], Th. 6.2.13), and QnH(b)H(c̃)Qn → 0 in the trace norm,
whence

det Tn(a)/G(a)n → E(a),

the strong Szegö limit theorem. See [Si4], Ch. 6, [Si6], [BasW], [BotW] (in
[Si4] §6.2 the result is given in OPUC terms; here b, c are the phase function
h/h and its inverse).

(B + sSz).
We may have both of the strong conditions (B) and (sSz) (as happens in

Kac’s method [Kac], for instance). Matters then simplify, since the spectral
density w is now continuous and positive. So w is bounded away from 0 and
∞, so log w is bounded. Write

ω2(δ, h) := sup
|θ|≤δ

(∫
|h(λ+ θ)− h(λ)|2dλ

)1/2
for the L2 modulus of continuity. Applying [IbRo], IV.4, Lemma 7 to logw,

L ∈ H1/2 ⇔
∞∑
k=1

ω2(1/k, logw) < ∞,

and applying it to w,

γ ∈ H1/2 ⇔
∞∑
k=1

ω2(1/k, w) < ∞.

Thus under (B), L ∈ H1/2 and γ ∈ H1/2 become equivalent. This last
condition is Li’s proposed definition of long-range dependence:

LRD ⇔ γ /∈ H1/2 (Li)

([Li], §3.4; compare the Debowski-Inoue definition (DI) above, that LRD iff
α /∈ ℓ1).

We are now in W ∩H1/2, the intersection of H1/2 with the Wiener algebra
W (of absolutely convergent Fourier series) relevant to Baxter’s theorem as
in §3. As there, we can take inverses, since the Szegö function is non-zero
on the circle (cf. [BotSi2], §5.1). One can thus extend Theorem 2 to this
situation, including the cepstral condition L ∈ H1/2 (Li [Li], Th. 1 part 3,
showed that L ∈ H1/2 and γ ∈ H1/2 are equivalent if w is continuous and
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positive).

L∞ + (sSz).
The bounded functions in H1/2 form an algebra, the Krein algebra K, a

Banach algebra under convolution; see Krein [Kr], Böttcher and Silbermann
[BotSi1] Ch. 10, [BotSi2] Ch. 5, [Si4], 344, [BotKaSi]. The Krein algebra
may be used as a partial substitute for the Wiener algebra Wused to treat
Baxter’s theorem in §3 (W ∩H1/2 is also an algebra: [BotSi], §5.1).

5.1. ϕ-mixing
Weak dependence may be studied by a hierarchy of mixing conditions;

for background, see e.g. Bradley [Bra1], [Bra2], [Bra3], Bloomfield [Bl3],
Ibragimov and Linnik [IbLi], Ch. 17, Cornfeld et al. [CorFoSi]), and in the
Gaussian case Ibragimov and Rozanov [IbRo], Peller [Pel]. We need two
sequences of mixing coefficients:

ϕ(n) := E sup{|P (A|F0
−∞)− P (A)| : A ∈ F∞

n };

ρ(n) := ρ(F0
−∞,F∞

n ),

where
ρ(A,B) := sup{∥E(f |B)− Ef∥2/∥f∥2 : f ∈ L2(A)}.

The process is called ϕ-mixing if ϕ(n) → 0 as n → ∞, ρ-mixing if ρ(n) → 0.
(The reader is warned that some authors use other letters here – e.g. [IbRo]
uses β for our ϕ; we follow Bradley.)

We quote [Bra1] that ϕ-mixing implies ρ-mixing. We regard the first as
a strong condition, so include it here, but the second and its several weaker
relatives as intermediate conditions, which we deal with in §6 below.

The spectral characterization for ϕ-mixing is

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the unit circle and the cepstrum
L∗ = (L∗

n) of w∗ satisfies the strong Szegö condition (sSz) ([IbRo] IV.4, p.
129). This is weaker than (sSz). In the Gaussian case, ϕ-mixing (also known
as absolute regularity) can also be characterized in operator-theoretic terms:

ϕ(n) can be identified as
√
tr(Bn), where Bn are compact operators with

finite trace, so ϕ-mixing is tr(Bn) → 0 ([IbRo], IV.2 Th. 4, IV.3 Th. 6).
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6. Intermediate conditions

We turn now to four intermediate conditions, in decreasing order of strength.

6.1. ρ-mixing
The spectral characterization of ρ-mixing (also known as complete regu-

larity) is
µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the unit circle and

log w∗ = u+ ṽ,

with u, v real and continuous (Sarason [Sa2]; Helson and Sarason [HeSa]).
An alternative spectral characterization is

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the unit circle and for all ϵ > 0,

log w∗ = rϵ + uϵ + ṽϵ,

where rϵ is continuous, uϵ, vϵ are real and bounded, and ∥uϵ∥ + ∥vϵ∥ < ϵ
([IbRo], V.2 Th. 3; we note here that inserting such a polynomial factor
preserves complete regularity, merely changing ρ – [IbRo] V.1, Th. 1).

6.2. Positive angle: the Helson-Szegö and Helson-Sarason conditions.
We turn now to a weaker condition. For subspaces A, B of H, the angle

between A and B is defined as

cos−1 sup{|(a, b)| : a ∈ A, b ∈ B}.

Then A, B are at a positive angle iff this supremum is < 1. One says that
the process X satisfies the positive angle condition, (PA), if for some time
lapse k the past cls(Xm : m < 0) and the future cls(Xk+m : m ≥ 0) are at
a positive angle, i.e. ρ(0) = . . . ρ(k − 1) = 1, ρ(k) < 1, which we write as
PA(k) (Helson and Szegö [HeSz], k = 1; Helson and Sarason [HeSa], k > 1).
The spectral characterization of this is

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),
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where P is a polynomial of degree k− 1 with its roots on the unit circle and

log w∗ = u+ ṽ,

where u, v are real and bounded and ∥v∥ < π/2 ([IbRo] V.2, Th. 3, Th. 4).
(The role of π/2 here stems from Zygmund’s theorem of 1929, that if u is
bounded and ∥u∥ < π/2, exp{ũ} ∈ L1 ([Z1], [Z2] VII, (2.11), [Tor], V.3: cf.
[Pel] §3.2.) Thus ρ-mixing implies (PA) (i.e. PA(k) for some k).

The case PA(k) for k > 1 is a unit-root phenomenon (cf. the note at
the end of §3). We may (with some loss of information) reduce to the case
PA(1) by sampling only at every kth time point (cf. [Pel], §§8.5, 12.8). We
shall do this for convenience in what follows.

It turns out that the Helson-Szegö condition (PA(1)) coincides with
Muckenhoupt’s condition A2 in analysis:

sup
I

( 1

|I|

∫
I
w(θ)dθ

)( 1

|I|

∫
I

1

w(θ)
dθ

)
< ∞, (A2)

where |.| is Lebesgue measure and the supremum is taken over all subin-
tervals I of the unit circle T . See e.g. Hunt, Muckenhoupt and Wheeden
[HuMuWh]. With the above reduction of PA to PA(1), we then have ρ-
mixing implies PA(1) (= A2).

6.3. Pure minimality
Consider now the interpolation problem, of finding the best linear inter-

polation of a missing value, X0 say, from the others. Write

H ′
n := cls{Xm : m ̸= n}

for the closed linear span of the values at times other than n. Call X minimal
if

Xn /∈ H ′
n,

purely minimal if ∩
n

H ′
n = {0}.

The spectral condition for minimality is (Kolmogorov in 1941, [Kol] §10)

1/w ∈ L1, (min)
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and for pure minimality, µs = 0 also (Makagon-Weron in 1976, [MakWe];
Sarason in 1978, [Sa1]; [Pou], Th. 8.10):

1/w ∈ L1, µs = 0. (purmin)

Of course (A2) implies 1/w ∈ L1, so the Helson-Szegö condition (PA(1)) (or
Muckenhoupt condition (A2)) implies pure minimality. (From log x < x− 1
for x > 1, (min) implies (Sz): both restrict the small values of w ≥ 0, and
in particular force w > 0 a.e.) For background on the implication from the
Helson-Szegö condition PA(1) to (A2), see e.g. Garnett [Gar], Notes to Ch.
VI, Treil and Volberg [TrVo2].

Under minimality, the relationship between the moving-average coeffi-
cients m = (mn) and the autoregressive coefficients r = (rn) becomes sym-
metrical, and one has the following complement to Theorem 4:

Theorem 7 (Inoue). For a stationary process X, the following are equiva-
lent:
(i) The process is minimal.
(ii) The autoregressive coefficients r = (rn) in (AR) satisfy r ∈ ℓ2.
(iii) 1/h ∈ H2.

Proof. Since

1/h(z) = exp
( 1

4π

∫ (eiθ + z

eiθ − z

)
log(1/w(θ))dθ

)
(z ∈ D), (OF ′)

and ± logw are in L1 together, when 1/w ∈ L1 (i.e. the process is minimal)
one can handle 1/w, 1/h, m = (mn) as we handled w, h and r = (rn), giving

1/h ∈ H2

and
r = (rn) ∈ ℓ2.

Conversely, each of these is equivalent to (min); [In1], Prop. 4.2. //

6.4. Rigidity; (LM), (CND), (IPF ).
Rigidity; the Levinson-McKean condition.

Call g ∈ H1 rigid if is determined by its phase or argument:

f ∈ H1 (f not identically 0), f/|f | = g/|g| a.e. ⇒
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f = cg for some positive constant c.

This terminology is due to Sarason [Sa1], [Sa2]; the alternative terminology,
due to Nakazi, is strongly outer [Na1], [Na2]. One could instead say that such
a function is determined by its phase. The idea originates with de Leeuw and
Rudin [dLR] and Levinson and McKean [LevMcK]. In view of this, we call
the condition that µ be absolutely continuous with spectral density w = |h|2
with h2 rigid, or determined by its phase, the Levinson-McKean condition,
(LM).
Complete non-determinism; intersection of past and future.

In [InKa2], the following two conditions are discussed:
(i) complete non-determinism,

H(−∞,−1] ∩H[0,∞) = {0} (CND)

(for background on this, see [BlJeHa], [JeBl], [JeBlBa]),
(ii) the intersection of past and future property,

H(−∞,−1] ∩H[−n,∞) = H[−n,−1] (n = 1, 2, . . .) (IPF )

These are shown to be equivalent in [InKa2]. In [KaBi], it is shown that both
are equivalent to the Levinson-McKean condition, or rigidity:

(LM) ⇔ (IPF ) ⇔ (CND).

These are weaker than pure minimality ([Bl3], §7, [KaBi]). But since (CND)
was already known to be equivalent to (PND) + (IPF ), they are stronger
than (PND). This takes us from the weakest of the four intermediate con-
ditions of this section to the stronger of the weak conditions of §3.

7. Remarks

1. VMO ⊂ BMO.
The spectral characterizations given above were mainly obtained before

the work of Fefferman [Fe] in 1971, Fefferman and Stein [FeSt] in 1972 (see
Garnett [Gar], Ch. VI for a textbook account): in particular, they predate
the Fefferman-Stein decomposition of a function of bounded mean oscillation,
f ∈ BMO, as

f = u+ ṽ, u, v ∈ L∞.
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This has a complement due to Sarason [Sa3], where f here is in VMO iff u,
v are continuous. Sarason also gives ([Sa3], Th. 2) a characterization of his
class of functions of vanishing mean oscillation VMO within BMO related
to Muckenhoupt’s condition (A2).

While both components u, v are needed here, and may be large in norm,
it is important to note that the burden of being large in norm may be born by
a continuous function, leaving u and ṽ together to be small in (L∞) norm (in
particular, less than π/2). This is the Ibragimov-Rozanov result ([IbRo], V.2
Th. 3), used in §6.1 to show that absolute regularity (§5) implies complete
regularity.

2. H1/2 ⊂ VMO.
The class H1/2 is contained densely within VMO (Prop. A2, Boutet

de Monvel-Berthier et al. [BouGePu]). For H1/2, one has a version of the
Fefferman-Stein decomposition for BMO:

f ∈ H1/2 ⇔ f = u+ ṽ, u, v ∈ H1/2 ∩ L∞

([Pel] §7.13).

3. Winding number and index.
The class H1/2 occurs in recent work on topological degree and wind-

ing number; see Brezis [Bre], Bourgain and Kozma [BouKo]. The wind-
ing number also occurs in operator theory as an index in applications of
Banach-algebra methods and the Gelfand transform; see e.g. [Si4], Ch. 5
(cf. Tsirelson [Ts]).

4. Conformal mapping.
The class H1/2 also occurs in work of Zygmund on conformal mapping

([Z2], VII.10).

5. Rapid decay and continuability.
Even stronger than the strong conditions considered here in §§4, 5 is

assuming that the Verblunsky coefficients are rapidly decreasing. This is
connected to analytic continuability of the Szegö function beyond the unit
disk; see [Si7].

6. Scattering theory.
The implication from the strong Szegö (or Golinskii-Ibragimov) condition
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to the Helson-Szegö/Helson-Sarason condition (PA) has a recent analogue in
scattering theory (Golinskii et al. [GolKhPeYu], under ’(GI) implies (HS)’).

7. Wavelets.
Traditionally, the subject of time series seemed to consist of two non-

intercommunicating parts, ’time domain’ and ’frequency domain’ (known to
be equivalent to each other via the Kolmogorov Isomorphism Theorem of
§2). The subject seemed to suffer from schizophrenia (see e.g. [BriKri] and
[HaKR]) – though the constant relevance of the spectral or frequency side
to questions involving time directly is well illustrated in the apt title ’Past
and future’ of the paper by Helson and Sarason [HeSa] (cf. [Pel] §8.6). This
unfortunate schism has been healed by the introduction of wavelet methods
(see e.g. the standard work Meyer [Me], Meyer and Coifman [MeCo], and in
OPUC, Treil and Volberg [TrVo1]). The practical importance of this may be
seen in the digitization of the FBI’s finger-print data-bank (without which
the US criminal justice system would long ago have collapsed). Dealing with
time and frequency together is also crucial in other areas, e.g. in the high-
quality reproduction of classical music.

8. Higher dimensions: matrix OPUC (MOPUC).
We present the theory here in one dimension for simplicity, reserving

the case of higher dimensions for a sequel [Bin2]. We note here that in
higher dimensions the measure µ and the Verblunsky coefficients αn become
matrix-valued (matrix OPUC, or MOPUC), so one loses commutativity. The
multidimensional case is needed for portfolio theory in mathematical finance,
where one holds a (preferably balanced) portfolio of risky assets rather than
one; see e.g. [BinFrKi].

9. Non-commutativity.
Much of the theory presented here has a non-commutative analogue in op-
erator theory; see Blecher and Labuschagne [BlLa], Bekjan and Xu [BeXu]
and the references cited there.

10. Non-stationarity.
As mentioned in §1, the question of whether or not the process is station-

ary is vitally important, and stationarity is a strong assumption. The basic
Kolmogorov Isomorphism Theorem can be extended beyond the stationary
case in various ways, e.g. to harmonisable processes (see e.g. [Rao]). For
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background, and applications to filtering theory, see e.g. [Kak]; for filtering
theory, we refer to e.g. [BaiCr].

11. Continuous time.
The Szegö condition (Sz) for the unit circle (regarded as the boundary

of the unit disc) corresponds to the condition∫ ∞

−∞

log |f(x)|
1 + x2

dx > −∞

for the real line (regarded as the boundary of the upper half-plane). This
follows from the Möbius function w = (z− i)/(z+ i) mapping the half-plane
conformally onto the disc; see e.g. [Du], 189-190. The consequences of this
condition are explored at length in Koosis’ monograph on the ‘logarithmic
integral’, [Koo2]. Passing from the disc to the half-plane corresponds prob-
abilistically to passing from discrete to continuous time (and analytically to
passing from Fourier series to Fourier integrals). The probabilistic theory is
considered at length in Dym and McKean [DymMcK].

12. Gaussianity and linearity.
We have mentioned the close links between Gaussianity and linearity in

§1. For background on Gaussian Hilbert spaces and Fock space, see Jan-
son [Jan], Peller [Pel]; for extensions to §§5.1, 6 in the Gaussian case, see
[IbRo], [Pel], [Bra1] §5. To return to the undergraduate level of our opening
paragraph: for an account of Gaussianity, linearity and regression, see e.g.
Williams [Wil], Ch. 8, or [BinFr].
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2nd ed. Hermann, Paris, 1994.
[Kak] Y. Kakihara, The Kolmogorov isomorphism theorem and extensions to
some non-stationary processes. Stochastic processes: Theory and methods
(ed. D. N. Shanbhag and C. R. Rao), Handbook of Statistics 19, North-
Holland, 2001, 443-470.
[KanSch] H. Kantz and T. Schreiber, Nonlinear time series analysis, Cam-
bridge University Press, 1997 (2nd ed. 2004).
[KaBi] Y. Kasahara and N. H. Bingham, Verblunsky coefficients and Nehari
sequences. Preprint, Hokkaido University.
[KatSeTe] D. Kateb, A. Seghier and G. Teyssière, Prediction, orthogonal
polynomials and Toeplitz matrices. A fast and reliable approach to the
Durbin-Levinson algorithm. Pages 239-261 in [TK].
[Kel] F. P. Kelly (ed.), Probability, statistics and optimization. A tribute to
Peter Whittle. Wiley, 1994.
[KenSt] M. G. Kendall and A. Stuart, The advanced theory of statistics.
Charles Griffin. Volume 1 (4th ed., 1977), Vol. 2 (3rd ed, 1973), vol. 3 (3rd
ed., 1976).
[KokTa] P. S. Kokoszka and M. S. Taqqu, Can one use the Durbin-Levinson
algorithm to generate infinite-variance fractional ARIMA time series? J.
Time Series Analysis 22 (2001), 317-337.
[Kol] A. N. Kolmogorov, Stationary sequences in Hilbert space. Bull. Moskov.
Gos. Univ. Mat. 2 (1941), 1-40 (in Russian; reprinted, Selected works of A.
N. Kolmogorov, Vol. 2: Theory of probability and mathematical statistics,
Nauka, Moskva, 1986, 215-255).
[Koo1] P. Koosis, Introduction to Hp spaces, 2nd ed. Cambridge Tracts
Math. 115, Cambridge Univ. Press, 1998 (1st ed. 1980).
[Koo2] P. Koosis, The logarithmic integral, I, 2nd ed., Cambridge Univ.

39



Press, 1998 (1st ed. 1988), II, Cambridge Univ. Press, 1992.
[Kr] M. G. Krein, On some new Banach algebras and Wiener-Lévy type the-
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[Sz1] G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten
einer reellen positiven Funktion. Math. Ann. 76 (1915), 490-503.
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