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REGULAR VARIATION AND PROBABILITY: THE EARLY YEARS

N. H. BINGHAM

§1. Introduction.

It is a pleasure for ‘B of BGT’ to write in appreciation of ‘T of BGT’, on the
occasion of Jef Teugels’ retirement, and also to remind myself of the promise we made
each other – all those years ago, in the early seventies – to write the book that regular
variation so obviously required. The theme has continued to attract my interest, Jef’s and
that of his pupils since. As for the book ([BGT] below), it continues to be my most cited
work, and to find its place in the working library of probabilists.

It is a pleasure also to return to the theme of Bingham (1990a), with the benefit
of another fifteen years’ worth of hindsight.
§2. Early History: Analysis.

Anyone with an interest in the history of mathematics and in regular variation
would be well advised to read Hardy’s Cambridge Tract Orders of infinity (Hardy (1910)).
This venerable work is fascinating for a variety of reasons – not least its extensive list of
references, some going back to the 1700s. We find (§4.41), for example, where Karamata
found the name ‘regular growth’ (the original term for ‘regular variation’): it was used by
Borel – not of course in Karamata’s sense - in a way suggested by the theory of integral
functions. We see here the Hardy of Pure Mathematics, interested in convergence tests and
the like, and of the early Hardy-Littlewood papers on Tauberian theorems. Much emphasis
is given to functions of ‘logarithmico-exponential’ type - functions that can be built up from
products of powers of logarithms and their iterates, and exponentials and their iterates.

One of the earliest results in what came to be the theory of regular variation
goes back to Landau (1911). Motivated by analytic number theory, Landau worked with
monotone functions, and made the observation that if for a positive monotone function `

on IR+ one has

`(λx)/`(x) → 1 (x →∞)

for one λ 6= 1, one has it for all λ > 0, and so ` is slowly varying (in modern terminology).
Pólya (1917), also motivated by analytic number theory, assumed that ` is positive
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and

`(2x)/`(x) → 1 (x →∞).

He shows that for f Riemann integrable on [0, 1] and p the primes,

log x

x

∑

p≤x

f(p/x) →
∫ 1

0

f(t)dt (x →∞),

and similarly with the primes p replaced by other sequences q whose counting functions
satisfy ∑

q≤x

1 ∼ x/`(x).

Pólya’s proof is noteworthy, both for anticipating the use of approximation above and
below by step functions exploited so well later by Karamata, Wielandt and others, and
for providing (again, in modern terminology) an Abelian theorem for a Mellin convolution
of Stieltjes form. Pólya’s work was continued in the books Pólya & Szegö (1925), which
influenced Karamata, the key figure in the field, to whom we now turn.

The modern period of regular variation in analysis begins with Karamata (1930).
This famous classic led to the Hardy-Littlewood-Karamata theorem next year, Karamata
(1931), to a succession of other contributions by Karamata himself, and to the work of the
‘Jugoslav school’ of Karamata’s pupils, notably Aljanc̆ić, Bojanic and Tomić. Some of the
best and most important work here was published in preprint form by the Mathematical
Research Center, then supported at Madison, Wisconsin by the US Army, rather than in
regular journals, where it would have been more easily accessible and might have made an
earlier impact.

One thing that puzzled me when I began work in this area was why Karamata
and his co-workers had turned aside from this promising line of work in 1963. I asked
Ranko Bojanic this when I met him at Ohio State University in 1988. He replied that
‘they hadn’t known what it was good for’ ! This illustrates beautifully, both the supreme
importance of applications to theory and the crucial role played in this field by probability
theory, to which we turn next.
§3. Extreme-Value Theory

The formal beginning of the field of Extreme-Value Theory (EVT) may be taken
to be the period 1927-28. In Fréchet (1927), two of the three kinds of extreme-value
distribution (the Fréchet and the Weibull, in modern terminology) are obtained. All three
are obtained in the classic paper by Fisher & Tippett (1928). This presents the extreme-
value distributions as – to within type, or to within location and scale – a one-parameter
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family, split into three by the value zero of the parameter. These have become known
since as the Fréchet (heavy-tailed), Gumbel (light-tailed) and Weibull (bounded tail),
after Maurice Fréchet (1878-1973), French mathematician, Emil Julius Gumbel (1891-
1966), German statistician and Waloddi Weibull (1887-1979), Swedish engineer.

Richard von Mises (1883-1953) studied EVT in 1936, giving in particular the von
Mises conditions – sufficient conditions on the hazard rate (assuming the density exists)
in order to give a situation in which EVT behaviour occurs, leading to one of the above
three types of limit law – that is, giving an extremal domain of attraction D(G) for the
extreme-value distribution G. The domains of attraction of the Fréchet laws Φα and the
Weibull laws Ψα (to use one of the common notations) were given by Gnedenko (1943),
and progress towards the domain of attraction D(Λ) of the Gumbel law Λ was made by
Mejzler (1949). This was later completed by Marcus & Pinsky (1969).

Meanwhile, mathematics was overtaken by reality. On the night of 31 January
to 1 February 1953, a storm surge in the North Sea caused extensive flooding and many
deaths. In the UK, 307 were killed; in the low-lying Netherlands, 1,783 people were killed
(over 1,800 on some counts). The author, then a schoolboy of seven, remembers the public
shock at the time very well. The Netherlands Government immediately gave top priority
to understanding the causes of such tragedies with a view to preventing them if possible.
Since it is the maximum sea level which is the danger, EVT is immediately relevant, and
thus EVT became a Netherlands scientific priority. One outcome of this was the doctoral
thesis of Laurens de Haan, de Haan (1970), written under the supervision of Professor
J. Th. Runnenberg. EVT has continued to be the leading theme of de Haan’s scientific
work – witness for instance the title of de Haan (1990), Fighting the arch-enemy with
mathematics.

De Haan’s definitive work gave rise to a variant, or refinement, of Karamata’s
regular variation. One may regard Karamata theory as the study of asymptotic relations
of the form

f(λx)/f(x) → g(λ) (x →∞) ∀λ > 0

(leading to g(λ) = λρ for some ρ: g is regularly varying with index ρ, g ∈ Rρ), and de
Haan theory as the study of more complicated relations of the form

{f(λx)− f(x)}/g(x) → h(λ) (x →∞) ∀λ > 0

(leading to g ∈ R0 slowly varying, h(λ) = c log λ for some c, the g-index of f). We then
say that f belongs to Π, the de Haan class. See e.g. BGT Ch. 1,2 for Karamata theory,
BGT Ch. 3, de Haan (1970) (in the context of EVT), Geluk & de Haan (1987) for de
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Haan theory. To summarise:
1. F ∈ D(Φα) iff 1− F ∈ R−α;
2. F ∈ D(Ψα) iff the upper end-point x+ of F is finite, and 1− F (x− − 1/x) ∈ R−α;
3. F ∈ D(Λ) iff U := (1 − F )−1 ∈ Π+, the class of f as above with g = ` slowly varying
and with positive `-index.

Extreme-Value Theory has flourished ever since, both as a branch of probability,
pure and applied, and as an area of statistics. The textbook literature includes Leadbet-
ter, Lindgren & Rootzén (1983), Resnick (1987) and Embrechts, Klüppelberg & Mikosch
(1997). The specialist journal Extremes began publication in 1999.
§4. Sums of random variables.

Even more central to probability than the maximum of random variables as in
EVT is sums of random variables, in random walks - and in forming sample means etc. in
statistics.

One should begin at the beginning, with the weak law of large numbers. For
X1, X2, . . . independent and identically distributed random variables, Sn :=

∑n
1 Xk the

partial sums, one can ask for conditions for the convergence

Sn/n → c (n →∞),

in probability (weak law of large numbers), or almost surely (strong law of large numbers).
Necessary and sufficient conditions for the above are, with φ(.) the characteristic function
of the distribution F of the Xn,
(a) φ(.) is differentiable at the origin and φ′(0) = ic,
(b) xP (|X| > x) → 0 and

∫ x

−x
ydF (y) → c (x →∞)

(of course, if the mean µ exists, then c = µ, but (a), (b) can hold even if the mean does
not exist). See Ehrenfeucht & Fisz (1960), Feller (1971), XVII.2a, VII.7.

One can then generalize, and ask for

Sn/an → 1 (n →∞)

in probability, for some sequence of constants an. This is called relative stability; the
necessary and sufficient condition for it is

xP (|X| > x)/
∫ x

−x

ydF (y) → 0 (x →∞) (1)

(Gnedenko & Kolmogorov (1954), §28; Rogozin (1976), Maller (1978), (1979)).
In the corresponding question regarding the central limit theorem, one asks for

conditions for which

(Sn − an)/bn → G in distribution (n →∞), (∗)
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for suitable centring sequences an, norming sequences bn and limit distributions G. Then
the possible limit laws G are the stable laws, whose most important parameter is the index
α ∈ (0, 2]. For α = 2, the limit law G is the normal or Gaussian (which one may take
without loss of generality to be the standard normal, Φ, by suitably adjusting an, bn).

Let us take the normal case α = 2 first. The necessary and sufficient condition for
a normal limit above – that is, for F to belong to the domain of attraction D(Φ) of the
standard normal – is

x2P (|X| > x)/
∫ x

−x

y2dF (y) → 0 (x →∞) (2)

(Lévy (1937), §36). The result was discovered independently by Lévy (1935), Feller (1935)
and Khintchine (1935).
§5. Gnedenko; Gnedenko & Kolmogorov.

One is first struck by the similarity between (1) and (2) above. Thus one might
suspect some link between relative stability and convergence of sums (suitably centred
and scaled) to a Gaussian limit. This link in indeed there. It was shown by Gnedenko
(1939) that one has relative stability of the partial sums Sn of the Xn iff the Xn, when
centred at means and squared, are in the domain of attraction of the Gaussian, D(Φ). This
remarkable result entered the textbook literature in Gnedenko & Kolmogorov (1949/54),
§28. Of course, it immediately gives the link between (1) and (2) above.

For (∗) to hold for a non-Gaussian stable limit law G - that is, for 0 < α < 2 - the
necessary and sufficient condition is
(i) tail-balance:

P (X < −x)/P (|X| > x) → q, P (X > x)/P (|X| >) → p (p + q = 1) (x →∞),
(3a)

(ii)
P (|X| > λx)/P (|X| > x) → λα (x →∞), ∀λ > 0. (3b)

This result, which is due to Gnedenko (1939) and Doeblin (1940), appears in the textbook
literature in Gnedenko & Kolmogorov (1949/1954), §35.

This year marks the half-centenary of the English version of Gnedenko & Kol-
mogorov (1949/54), translated by K.-L. Chung. The book is an enduring classic, and has
been very influential. It has long since been a bibliographical rarity, and copies of it are
hard to come by and treasured (my record here is ‘given one, inherited one, given one
away’). To quote Bingham (1990b), §2:
‘Something of the power and scope of [the book], as well as its style, is aptly summarized
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by its translator, Chung in his preface: ‘... a certain amount of mathematical maturity,
perhaps a touch of single-minded perfectionism, is needed to penetrate and appreciate the
classic beauty of this definitive work’ ’. Of its central theme, Chung remarks again, in the
preface to his own book Chung (1974), that it ‘has been called the ”central problem” of
classical probability theory. Time has marched on and the centre of the stage has shifted,
but this topic remains without doubt a crowning achievement’ ’.

The power and probabilistic importance of the results quoted above is clear. What
is strikingly lacking in them is any explicit use of the language, viewpoint and results of
regular variation, although this had been available in the works of Karamata and his school
since 1930.
§6. Regular variation and probability theory: Sakovich and Feller.

Credit for making the link between Karamata’s regular variation and the prob-
ability limit theorems above explicit belongs to Sakovich (1956), writing – appropriately
enough – in the first volume of the then new Soviet journal Theory of Probability and its

Applications.
For some reason, Sakovich’s work was overlooked, and had to be rediscovered

later. In 1966, Feller published his sequel An introduction to probability theory and its

applications, Volume II, Feller (1966/71), to his earlier book Feller (1950/57/68). In Feller
(1966/71), VIII.8 one finds a definition of regular variation, in VIII.9 one finds Karamata’s
theorem, and in IX.8 domains of attraction. Here one finds the equivalence of condition
(2) for D(Φ) with

the truncated variance V (x) :=
∫ x

−x
y2dF (y) is slowly varying, (4)

that (2) and (4) are equivalent being an instance of Karamata’s theorem ([BGT], §1.6,
§8.3). Here one can also find (3b) in its natural form:

the tail-sum T (x) := P (|X| > x) is regularly varying with index −α, T ∈ R−α. (5)

These passages are perhaps the most used and most quoted of Feller’s book. The
book has many general virtues – a generation of probabilists, including myself, were brought
up on it. But one would hesitate to use it for instructional purposes today. Its great virtue –
lots of beautiful examples – carries the drawback of length, and the danger of not seeing the
wood for the trees, especially for the young or inexperienced. The structural weaknesses of
avoiding both measure theory and continuous time – a third volume on stochastic processes
was planned, but Feller died before he could write it – are plain to see. The next generation
of books – Breiman (1968), Chung (1968/74), Billingsley (1979/86) and their successors
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– were so excellent that ‘Feller vol. II’ became a work of reference rather than a text to
learn from – except for the precious passages on regular variation referred to above.
§7: BGT and after.

Such was the situation when BGT was planned and written. In addition to Feller,
there was de Haan (1970), written from the point of view of EVT, followed by Geluk and de
Haan (1987), a brief (132-page) treatment from the point of view of analysis and Tauberian
theory. Following the penetrating studies Seneta (1969), (1974) on regular variation and
branching processes came Seneta (1976), a brief (112-page) analytic treatment of the basic
theory. The Bibliographic Notes and Discussion sections in Seneta (1976) are of historic
interests, as too are Seneta (1990), (2002).

So far as the later literature on regular variation is concerned, one may perhaps
subdivide things by theme.
Analysis and Tauberian theory.
The book by Korevaar (2004), Tauberian theory – A century of developments, contains
a wealth of results, including – Chapter 4, Part 2 – a thorough treatment of the role of
regular variation within Tauberian theory.
Extreme-Value theory.
The book by Resnick (1987) – published in the same year as BGT – provides a monograph
account of the role of EVT and regular variation in the context of point processes. Regular
variation is used extensively in the book by Embrechts, Klüppelberg & Mikosch (1997),
where the motivation is its use in EVT and applications in the mathematics of finance,
insurance, actuarial science and the like.
Higher dimensions.
The most obvious limitation of BGT is its restriction to one dimension. The multivariate
theory is interesting, and necessary for many applications. For a monograph treatment,
see Meerschaert & Scheffler (2001), especially Part II (Chapters 4-6), Multivariate regular
variation.
Heavy tails.
Heavy tails in the broad sense underlie most of the work above: non-Gaussian domains
of attraction show regularly varying tail-decay – ‘Pareto tails’ – which is extremely slow
compared to the ultra-fast – log-quadratic – tail decay in the Gaussian case. A great
impetus to the study of heavy tails was provided by the study of long-range dependence
(Beran (1994)), motivated by such things as the Hurst effect in hydrology and the study
of statistics of internet traffic. A broad account of heavy tails in theory and practice is
given by Adler, Feldman and Taqqu (1998).
Risk management.
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The benchmark model of mathematical finance is the Black-Scholes-Merton model, where
the underlying noise driving price processes is Gaussian. Experience has shown that the
tails of financial data sets are typically much heavier than in the Gaussian case. Since
financial crises are triggered by exceptional large losses, much emphasis is placed nowadays
on quantifying the probability of such exceptionally large losses. The usual measure is value
at risk (VaR), but the problem area of risk management is much broader. The area is vast;
for background and references, see e.g. Bassi, Embrechts & Kafetzaki (1998), Bingham &
Kiesel (2002), Bingham, Kiesel & Schmidt (2003).
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