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Abstract
We consider statistical aspects of the modelling and prediction theory of

time series in one and many dimensions. We discuss Lévy-based and general
models, and the stationary and non-stationary cases. Our starting point is
the recent pair of surveys, Szegö’s theorem and its probabilistic descendants
and Multivariate prediction and matrix Szegö theory, by this author.
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1. Introduction.
Mathematical finance provides us with a rich source of interesting math-

ematical and statistical problems. The difficulty of predicting asset prices,
combined with the importance of being able to do so, motivates the search
for stochastic models for risky asset prices; see e.g. [BinKi2], or any other
book in the area. And the area abounds with real data, and so one’s models
can be checked and compared.

The prototypical model for asset prices is the Black-Scholes model, dating
back to 1973; for a text-book treatment in the multi-dimensional (or multi-
asset) case, see e.g. [KarShr], Ch. 1. An investor holds some cash risklessly,
at interest rate r say (see below), and some risky assets, S1(t), . . . Sd(t) say.
The (Black-Scholes) stochastic differential equation (SDE) driving the asset
prices contains a vector µ = (µ1, . . . , µd), where µi is the return rate on the
ith asset, and a covariance matrix Σ, giving the covariances between the as-
sets. By Markowitzian diversification ([Mar1], [Mar2]), we should
(a) think of risk and return together, not separately – that is, we should
think of µ and Σ together;
(b) hold a balanced portfolio of a number of assets, ‘balanced’ meaning that
there is lots of negative correlation.
Thus any proper treatment contains (µ,Σ), which we regard as the paramet-
ric component of our model. The number d of assets could be quite large (e.g.,
we might diversify between the dozen or so principal sectors in the economy,

1



and within sectors, diversify further between several leading firms). The neg-
ative correlation means that, when the economic climate changes (as it will),
losses on some assets will tend to be compensated by gains on others (‘what
one loses on the swings, one gains on the roundabouts’).

There remains the main question: how to model the ‘driving noise’ – the
randomness driving the risky asset prices. The first choice concerns the di-
mensionality of the driving noise process. The world is exceedingly complex
(effectively infinite-dimensional); our data is d-dimensional – but, some of the
principal features of the ambient financial and business environment are re-
flected in the ‘business cycle’, which can plausibly be taken one-dimensional.
With a one-dimensional noise process as our ‘risk driver’, we can
(a) use a diffusion-based model, leading to a complete market (see e.g. [Bin-
FrKi] §4);
(b) use a model based on Lévy processes; see e.g. [BinFrKi] §3, [ConTan].
This allows for jumps, present in real financial data, but leads to an incom-
plete market model.
In either case, one has to model the driving noise process; this involves the
Lévy measure in the Lévy case, and the stationary distribution in the diffu-
sion case. This is the non-parametric component of our model.

Large financial data sets, such as multivariate time series as here, typi-
cally need preliminary treatment – filtering (‘cleaning’), de-seasonalization,
etc. We suppose this done here, as in e.g. [BreyDE].

2. Semi-parametric models
We thus seek a semi-parametric model, combining a parametric compo-

nent (µ,Σ) à la Markowitz, modelling the portfolio, and a non-parametric
component, modelling the noise or dynamics.

We assume for simplicity that the process X = (Xt) (t = 0, 1, 2, . . .: we
work in discrete time, until further notice) belongs to the elliptic family (see
e.g. [FanKN]). The distributions depend only on the quadratic form

Q(x) := (x− µ)TΣ−1(x− µ),

with d-vector argument x; we restrict attention to the full-rank case, when
Σ is invertible. See e.g. [BinKi1], [BinKiS] for the distributional (or static)
theory, [BinFrKi] for the dynamic theory – multivariate elliptic processes.
Of course, this assumption of elliptical symmetry needs testing; this can be
done, e.g. as in [ManPQ].
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In any compound statistical model such as this, one encounters the ques-
tion of the cost, when estimating one part of the model, of ignorance of the
other part. This is often considerable: the prototype is the normal model
N(µ, σ), where estimating µ with σ known leads to the normal distribution
but estimating µ with σ unknown leads to the Student t-distribution. One
might expect similar difficulties here, but these do not in fact occur. The
reason for this is the connection of the elliptical model with the affine group.
This theme is developed in detail in [BiKRW], §4.2, §6.3, for i.i.d. errors,
Drost et al. [DroKW] for time-series errors.

The first task is to estimate (µ,Σ). As our model will be elliptic, and so
the affine group will be relevant, it is sensible to choose our estimators to
respect the action of the affine group, or in statistical language to be affine
equivariant (cf. [GruRoc]). Such a location estimator µ̂ for µ is given by the
Oja median; see e.g. [Oja], [OjaOR]. For a survey of multivariate medians,
see [Sma], and for robust estimators of location, [Lop]. Affine equivariant
estimators Σ̂ of Σ are then given by [KosMO] and [LopRou]; see also [XiWu].

We point out that, even in the univariate case, estimation of means is
not possible with the same precision as estimation of variances. This phe-
nomenon is called mean blur; see e.g. Merton [Mer], Luenberger [Lue], §8.5,
Kuhn et al. [KuhPRF].

3. Stationarity and non-stationarity.
We recall the martingale approach to the pricing of risky assets (see e.g.

[BinKi2], Preface): one should
(i) discount everything: pass from nominal prices St to real prices S̃t :=
e−rtSt, with r the riskless interest rate;
(ii) pass from the real probability measure P to the equivalent martingale
measure (EMM), or risk-neutral measure, P ∗, and then take conditional ex-
pectations.
The point of the discounting in (i) is to induce stationarity (in the Black-
Scholes model, one can solve the relevant SDE, obtaining an exponential
martingale (cf. [RevYor] IV.3, VIII), from which stationarity follows). As is
well known, particularly from the work of C. W. J. (Sir Clive) Granger (see
e.g. [GraHat], [Bin2] §1), it is of prime practical importance to avoid use of
statistical methods designed for stationary situations in non-stationary ones,
as this can lead to misleading conclusions, via the phenomenon of spurious
regression.

In practice, this leads to problems of implementation. As in all time-
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series methods (for which our basic reference is [BroDav]), one needs a long
series of data to be able to predict with any accuracy (cf. [DahGir] here). On
the other hand, the world in general, and the financial world in particular,
is changeable, and interest rates change over time. Furthermore, one has a
range of possible interest rates by which to discount. Two obvious candi-
dates are the bank rate (in the UK, the Bank of England rate) and the Libor
(London inter-bank offered rate). Libor in particular is widely used to price
financial derivatives. During the liquidity crisis of 2007-8 (and subsequently),
banks were reluctant to lend, so reluctant to quote (Libor is calculated as a
weighted average of the rates quoted by a range of leading banks), and this
caused problems in pricing 1.

Apart from discounting, we note briefly the other common way of induc-
ing stationarity – differencing. One tests for stationarity; if the test is failed,
one differences and tests again, etc. This is part of the standard Box-Jenkins
approach, for which we refer to [BoxJeRe].

The basis of the prediction theory of stationary time-series is the Kol-
mogorov Isomorphism Theorem (KIT) ([Kol]; see e.g. [Bin2], §2). There is a
random measure Y with orthogonal increments, the Cramér process or spec-
tral process ([Cra], [CraLea] §7.5; see e.g. [Kal] for background on random
measures) and a probability measure m on T , the spectral measure, together
with an isomorphism

Xt ↔ eit. (KIT )

between the Hilbert spaces H (the L2-space of the process X = (Xt)) and
L2(m), which maps maps between the time domain on the left and the fre-
quency domain on the right. One has the Cramér representation

Xt =
∫
T
eitθdY (θ) (CR)

(the integral is round the unit circle T ),

E[(dY (θ))2] = dm(θ),

and (taking E[Xn] = 0, var(Xn) = 1 for simplicity, so covariance becomes
correlation) the correlation is given by the spectral representation

E[XnX̄0] =
∫
T
e−inθdm(θ). (SR)

1Worse: it has recently emerged that Libor quotes were manipulated at times, leading
to the current so-called ”Lie-bor scandal”.
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An alternative to discounting (or differencing) is to use the non-stationary
form of KIT, for which see e.g. [Kak]. Here one has, instead of a random
measure Y (.), a random bimeasure Y (., .). As with the stationary case, this
rests on the Karhunen-Loève expansion (and so on Mercer’s theorem, on the
eigenexpansion of the positive definite covariance function, and Stone’s the-
orem, on spectral representation of groups of unitary operators on Hilbert
space); see [Karh], [Loe] II §37 for background and details.

For a further approach, in terms of locally stationary processes, see Dahlhaus
[Dah1], [Dah2].

4. Discrete v. continuous time.
We restrict here to the stationary case, for simplicity. Typically, one has

data from a (here, financial) time series, which are discrete. We take the
time points equally spaced, say integer – these may be daily closing prices,
daily or monthly returns, high-frequency ‘tick’ data, etc. (tick data show
special features, because of market microstructure – see e.g. [BinS]). By
Pontryagin (or Fourier) duality, the discreteness of time corresponds to the
compactness of the unit circle in the spectral representation above. However,
the underlying models for stock prices are typically SDEs, so in continuous
time; also, there is a well-developed theory of continuous-time econometrics;
see e.g. Bergstrom [Berg]. It is thus useful to be able to pass at will between
discrete and continuous time (cf. [JaPr]). We can do this, simply by passing
from integer time t to continuous time t in (SR) (indeed, we have anticipated
this in our notation, by not using n for integer time).

Mathematically, discrete time and integrals on the unit circle involve
Hardy spaces on the unit disc D, while continuous time involves spectral
representations on the real line, and Hardy spaces on the upper half-plane;
see e.g. [Bin2], §8.11 for background and references. Discrete time involves
orthogonal polynomials on the unit circle (OPUC), continuous time involves
orthogonal polynomials on the real line (OPRL); see Simon [Sim1] for OPUC,
[Sim2] for OPUC and OPRL together. Levinson and McKean [LevMcK] and
Dym and McKean [DymMcK] deal with continuous time; for discrete-time
analogues of some of their results, see [KasBi].

By the Cramér representation (CR), we may pass at will between Xt at
integer times, Y , and Xt with time continuous – that is, we may recover
the whole process X = (Xt) from the values of X sampled at integer times
t = n. This allows us to interpolate from integer to non-integer times. This
interpolation is in fact extremely regular – indeed, it is as regular as one
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could imagine. What results here is a random entire function, indeed one
of exponential type π (see e.g. Boas [Boa] 2.1, 6.8), by the Paley-Wiener
theorem [PaWi].

The length 2π of the interval [0, 2π] (identified with the unit circle T
under θ ↔ eiθ) – or rather, its ratio to the time-interval 1 between the
integer times n – is crucial here. The sampling theorem states that, under
suitable conditions, one may recover the full function from values sampled
at a certain minimum rate, the Nyquist rate, but not at less frequent values.
See e.g. Partington [Par], §7,2, where the result is formulated in terms of
Paley-Wiener spaces. For K a compact subset of the real line, write PW (K)
for the space of functions f whose Fourier transform f̂ vanishes off K and is
in L2; for b > 0 write PW (b) for PW ([−b, b]). The functions in PW (b) are
entire of exponential type b, and belong to L2. By the sampling theorem, f
can be recovered by sampling at equal intervals π/b:

f(t) =
∞∑

n=−∞
f(nπ/b)

sin b(t− nπ/b)

b(t− nπ/b)
,

the series converging uniformly and in L2 (the sampling rate π/b is called the
Nyquist rate). Thus we have b = π and Nyquist rate 1. The sampling theo-
rem can be traced back to Cauchy in 1841, E. T. Whittaker in 1915, V. A.
Kotelnikov in 1933, J. M. Whittaker [Whi] in 1935, G. H. Hardy in 1941 and
C. E. Shannon in 1949; see also [Hig1] §2.6.3, [Hig2], [Hig3]. For stochastic
processes, as here, our main source is S. P. Lloyd in 1959 [Llo]; cf. Quinn
and Hannan [QuHa], (2.23). For background, references and a multiplicity
of viewpoints and applications, see e.g. Benedetto and Ferreira [BenFe]. We
note in particular that sampling at irregularly spaced time-points is possible.

5. Stochastic volatility
It is the volatility σ, or Σ, in the Black-Scholes model that is most prob-

lematic, and has to be estimated; as is well known, this can be done as
historic volatility by time-series methods, or implied volatility by inferring
it from option prices via the Black-Scholes formula (cf. e.g. [BinKi2] §7.3).
Volatility in fact varies, e.g. with strike price (leading to the so-called volatil-
ity smile, or smirk – see e.g. [Gat]). One also observes volatility clustering:
high volatility is associated with periods of economic stress, uncertainty or
turmoil, and these are interspersed with more normal periods with lower
volatility (see Aldous [Ald] for a general theoretical view on such clumping
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phenomena). This has led to the extensive use of stochastic volatility (SV)
models. In discrete time, prominent here are the ARCH (autoregressive con-
ditional heteroscedasticity) and GARCH (generalised ARCH) models; see
e.g. [Gou].

As above, one can proceed here in discrete or continuous time. The
continuous-time acronyms for ARMA and GARCH are CARMA and COG-
ARCH; for CARMA see e.g. [Bro], [BroFeKl], [BroDavYa2], and for COG-
ARCH [KluMaSz], [KluLiMa]; cf. [DroW].

6. Diffusions
Models based on diffusions may be preferred, on mathematical grounds,

because they are continuous, or because they lead to complete market mod-
els. Ergodic diffusions may be used as risk drivers in the multivariate elliptic
processes of §2 ([BinFrKi] §4). See e.g. Forman and Sorensen [ForSor] and
the references there for details, Kutoyants [Kut] for background on estima-
tion for ergodic diffusions.

7. Lévy models
Lévy processes have been widely used for modelling of stock prices. They

allow jumps (at the cost of leading to incomplete market models); the case
for doing so has been convincingly argued in, e.g., [ConTan] Ch. 1. They
allow for infinite activity – infinitely many jumps in finite time, resulting
from an infinite Lévy measure; this is very useful for modelling ‘jitter’ – the
very large number of very small jumps observed when the price process of a
heavily traded stock in normal market conditions is observed in detail. And
of course they allow a Brownian component, which may be convenient even
when not necessary. For a detailed recent study of univariate, high-frequency
data, see [AitSJ1] – [AitSJ4].

Ornstein-Uhlenbeck SDEs with driving Lévy noise, which lead to self-
decomposable (SD) stationary distributions, have been widely used in this
context; see e.g. [KluLiMa], [BroDavYa1]. In the multivariate elliptic pro-
cesses of [BinFrKi] §3, one has

Xt − µ = RtA
TUt = RtΣ

1
2Ut, (MEP )

where Σ has Cholesky decomposition Σ = ATA (so A = Σ
1
2 , the usual matrix

square root of the positive definite matrix Σ), U = (Ut) is Brownian motion
on the d-dimensional sphere, and R = (Rt) is the risk driver, the solution of
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the SDE
dRt = −cRtdt+ dZt, (OU)

of Ornstein-Uhlenbeck (OU) type, with driving noise Z = (Zt) a subordinator
(positive Lévy process), c > 0 (c = 1 if convenient). Subject to the log-
integrability condition

∫
log+(|x|)dν(x) < ∞, where ν is the Lévy measure of

Z, (OU) has a unique strong solution R = (Rt), which is positive, stationary
and has a limit distribution R∞ as t → ∞; this is self-decomposable (SD).
Conversely, every SD law is the limit law of such a process of OU type. See
Sato [Sat] §15-17 and §33 for background, and [BinFrKi] §3; see also [Bin1]
for the useful property of being of type G (G for Gaussian). One has

R2
t = (Xt − µ)TΣ−1(Xt − µ), (MEP ′)

which enables one to estimate the density ofR∞ by standard density-estimation
methods (see e.g. [Sil], [VenR] §5.6). One can pass between the Lévy mea-
sures of Z1 and R∞ by [Sat] Th. 17.5. Consistent statistical inference is
possible in this setting: see [JonMV] (non-parametric), [JonM] (parametric).

From (MEP ), one has ([BinFrKi], §3)

var(Xt|Rt) = R2
tΣ, var(Xt) = E[R2

t ]Σ.

This gives volatility clustering, one of the stylized facts of mathematical fi-
nance, subject to weak conditions on the covariance of R (e.g., being able to
approximate by the first few terms of the eigenexpansion). On the other
hand, using a one-dimensional risk-driver, though mathematically conve-
nient, is clearly an over-simplification.

For Sato processes – additive processes, with independent but not neces-
sarily stationary increments, see [Sat] Ch. 2, and for financial applications,
[EbeMad], [MadYor].

8. Prediction
For prediction theory in continuous time, we refer to Dym and McKean

[DymMcK].
For prediction theory for ARMA processes, we refer to [BroDav], Ch. 5.
What allows the reduction to a one-dimensional risk driver, as in (MEP ′),

is the spherical symmetry of the Brownian motion U in (MEP ). Without
this, one needs a d-dimensional treatment (below).

In one dimension, the recent survey [Bin2] gives an account, with refer-
ences, of finite and of infinite predictors (where one predicts the future given
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a finite section of the past or of the whole past), and of the convergence of
finite-predictor coefficients to infinite-predictor coefficients ([Bin2], §§4,5).

The methods of [Bin3] allow a direct multidimensional approach along
the same lines.

We note that the sequence of Verblunsky coefficients α = (αn)
∞
n=1 (for

which see also [BinInKa]) allows an attractive unrestricted parametrization
(αn ∈ D in the scalar case, with D the unit disc, ∥αn∥ < 1 in the matrix
case) as an alternative to the ARMA model.

Verblunsky’s theorem (see e.g. [Bin2] §3, [Bin3] §3) gives a bijection be-
tween the set of sequences α with terms in D (or sequences of matrices of
norm < 1) and the set m of probability measures on T . One thus has a
choice between estimating m, or at least its density w, by density-estimation
and spectral methods, and estimating α = (αn), the partial autocorrelation
function (PACF). The αn are the diagonal elements in the triangular ma-
trix of finite-predictor coefficients, via the Levinson-Durbin algorithm (see
e.g. [Bin2], §3). These can be estimated, as in [BroDav] §§3.4, 8.2 (sample
PACF; cf. [Deg1], [Deg2], [McLZ]).

It would be interesting to compare and contrast the performance of the
methods reviewed here on a variety of real data, particularly financial data
and particularly in many dimensions. But time and space do not allow us to
pursue this programme here.
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[Karh] K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrech-
nung. Ann. Acad. Sci. Fenn. 37 (1947), 1-79.
[KasBi] Y. Kasahara and N. H. Bingham, Verblunsky coefficients and Nehari
sequences. Trans. Amer. Math. Soc., in press.
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