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Lévy processes and self-decomposability in finance

N. H. BINGHAM

1. Lévy processes in finance

The central theme of Urbanik’s work in probability theory was infinite divis-
ibility. This in turn is intimately linked with Lévy processes and their structure.

The history of Lévy processes in finance pre-dates, in a sense, that of Lévy
processes themselves. As is well known, in his remarkable thesis, Louis Bachelier
in 1900 [Bach]) was the first to use Brownian motion to model movements of
stock prices, despite the fact that a proper mathematical basis for Brownian
motion did not emerge until the work of Daniell in 1919-1921 and Wiener in
1923, which provided us with Wiener measure and the Wiener process (see
Shafer and Vovk [SV] §3.2 for Daniell’s contribution). The Lévy-Khintchine
formula, and the theory of Lévy processes, emerged through the work of several
authors during the 1930s (see Lévy’s obituary, [Loe], for the detailed history).
The use of Brownian motion as driving noise for modelling stock prices via
geometric (or economic) Brownian motion was advocated by Samuelson from
1965 on [Sam], and this was the model used in the pioneering work by Black
and Scholes, and of Merton, in 1973 ([BaSc], [Mer]).

Now Brownian motion, and so geometric Brownian motion, is continuous,
and so provides a model in which prices evolve continuously. Immediately, one
has to stop, and consider this carefully. Are prices continuous? The answer, of
course, is that it depends on the closeness with which prices are observed. In
broad outline, prices do indeed evolve continuously, except under the influence of
major economic shocks. In fine detail, prices jump. This is partly because prices
are measured in terms of money, and money is quantized. More importantly, it
is because prices are determined through trading – price is the level at which
markets clear, or supply balances demand. Without trading, or in an illiquid
market, one does not know how much an asset is worth. With trading, or in
a liquid market, one does – not exactly, but approximately, or to within the
interval within which price currently fluctuates under the influence of trading
(or of the bid-ask spread needed to fund the maintenance of the market). Thus
price is inherently dynamic.

Again, one needs to take into account the nature – principally, the size –
of the economic agents involved, or the trades being made. Small investors, or
minor economic agents, are price takers and not price makers – they are able to
enter the market, trade in the volume they choose, and leave, without disturbing
the market price. (Of course, this is only true to the approximation above: the
very act of trading does shift price, if observed closely enough.) By contrast,
large investors, or major economic agents, are price makers, because the size
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of trades they need to make inevitably shifts market prices (they thus lack the
anonymity of the small trader, and this can be seriously damaging, especially
when a large trader is forced to trade through publicly visible weakness).

The upshot of all this is that one needs to distinguish between different types
of trading conditions, and model them differently. Under the ‘normal scenario’,
one has the every-day movement of heavily-traded stocks under normal mar-
ket conditions. Here, continuous price evolution (modelled by Brownian noise)
may be suitable for many purposes – as in the Black-Scholes model, the bench-
mark model of mathematical finance. However, even here the model does not
withstand close scrutiny, particularly over short time intervals. For example, it
gives tails that are much thinner than those actually encountered. One has the
attractive alternative of using a Lévy-based model instead (for textbook refer-
ences, see [CoTa], [Sch], [KSW]). Since the price movements one is attempting
to model consist of ‘jitter’ – large numbers of very small movements taking place
very rapidly – one has a wonderful modelling resource ready to hand. This is
to use a Lévy measure which has infinite mass (in the neighbourhood of the
origin, as it is finite elsewhere) – and thus produces infinitely many jumps in
finite time.

The term used nowadays for infinite-mass Lévy processes is infinite activity
(a term we learned from Professor Hélyette Geman). It provides the natural
real-world context for infinite-mass Lévy processes. These processes, whose ex-
istence and path properties were laid bare by Lévy in the 1930s, once stood as
prime examples of mathematical constructs which, while beautiful mathemat-
ically, seemed completely divorced from reality. Nowadays we are all used, as
probabilists, to the extent to which our subject has been harnessed to serve
the needs of mathematical finance, and of the financial services industry more
generally. It is worth remarking that things move in the other direction too. Fi-
nance provides a setting in which some of our models in probability, previously
regarded as arcane, idealized or as mathematics for its own sake, seem natural,
realistic and inevitable.

The jumps in a Lévy process are very natural for modelling purposes in
finance, and the first chapter in [CoTa] gives a particularly good justification
for them. By contrast, the independent increments assumption is less easy
to defend. It is perfectly reasonable (at least to a first approximation) to treat
tomorrow’s price-sensitive information as independent of yesterday’s, under nor-
mal market conditions. It is not reasonable during a sustained financial crisis.
One’s normal modelling assumptions thus break down, precisely when one needs
them most – during a crisis. This is, of course, less an argument against Lévy
models in finance than a recognition that one needs more than one model. At
the very least, one needs a model for use during normal conditions, as above,
and a model specifically designed for crises. Such models focus on extremes,
rather than typical price movements: the relevant probability is extreme value
theory (EVT), and the relevant finance is quantitative risk management (QRM).
The application of EVT to QRM is very topical; a recent monograph account
is [MFE], and a forthcoming one is [BE].

We close this section by making some remarks on the interplay between eco-
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nomics and finance. Much of economics is concerned with how prices are arrived
at. By contrast, in much of finance, one takes prices (of the underlying asset –
the underlying) as given, and the focus is on questions – pricing, hedging and so
on – concerning derivatives – things derived from the underlying. One may thus
regard finance as a specialized part of economics, where prices are given. As the
remarks above on agents being price takers or price makers show, this boundary
between finance and economics is blurred rather than sharp. However, it is in
the realm of infinite-activity Lévy-based models that this interface comes into
focus.

It is interesting to compare the viewpoint above, in which we single out the
infinite-activity case as crucial, to that expressed by Malliavin and Thalmaier
([MT], §8.1, p. 98) in their study of Malliavin calculus applied to mathematical
finance. There, they restrict to the finite-activity case (which they call finite
type), for technical convenience, as ”this class of processes is qualitatively suffi-
cient for the needs of mathematical finance”. As they remark, the finite-activity
case is dense in the general case.

2. Return distributions

In the Black-Scholes-Merton model, the benchmark model of mathematical
finance, the price St of a stock evolves over time in such a way that the log-
price log St is a Brownian motion (see e.g. [BK1], or any text on mathematical
finance). Instead of log-prices, one may focus on returns over some return
interval of length δ > 0. These are the relative price changes

Rn := (S(n+1)δ − Snδ)/Snδ.

Using the Taylor approximation log(1 + x) ∼ x for small x shows that working
with returns is substantially equivalent to working with log-prices. Because
of their great financial importance, return distributions have been studied in
depth; see e.g. [KS] for background.

The properties of return distributions depend (inter alia) on the length of
the return interval δ. For long δ (of the order of a month, say), since the re-
turn over a month is the sum of the returns over the days of the month, and
these may be taken independent (at least approximately), one has aggregational
Gaussianity: the return is the sum of a sizeable number of approximately inde-
pendent random variables, and so the central limit theorem applies; the returns
are thus Gaussian, and one is back with the Black-Scholes-Merton model as
described above. At the other extreme, one may have δ small, and be dealing
with high-frequency data (tick data, with δ of the order of minutes or seconds,
is common nowadays). For reasons involving scaling arguments (akin to those
arising in physics) – see [Man] – the return distributions in such cases have
heavy tails (Pareto tails – decreasing like a power, or like a regularly varying
function). This is in stark contrast to the ultra-thin tails in the Gaussian case
above with δ large. As one might expect, for δ intermediate – daily returns,
say – one obtains intermediate tail decay – typically, semi-heavy tails, in which
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the log-density decays linearly, rather than like a quadratic as in the Gaussian
case or a logarithm in the Pareto case. This occurs in the hyperbolic model, for
which see e.g. [BK2] and the references cited there.

Because the return over interval δ is the sum of the n returns over subinter-
vals of length δ/n, and these are independent (to the order of accuracy consid-
ered here), return distributions are typically infinitely divisible. As the return
interval δ varies, and indeed as the type of asset one is dealing with varies, the
modelling flexibility provided by the Lévy-Khintchine formula becomes avail-
able; see e.g. [BK1], §2.10-12, §5.5. The field of Lévy finance is so important
that several books are now devoted to it; see [Sch], [CoTa], [KSW], cited above.

Recall that the infinitely divisible laws are the limit laws of triangular arrays
– two-suffix arrays of independent random variables, individually negligible. It
is plausible that one will still have sufficient modelling flexibility if one restricts
this from two suffices to one – limits of independent sequences, suitably normed;
the class of limit laws so obtained is the class of self-decomposable distributions,
SD. This class SD has been found to serve very well, from the distributional
or static point of view. Furthermore, it also serves from the dynamic point
of view, when one considers time series. For, the defining property of self-
decomposability is that, for each c ∈ (0, 1), X should satisfy

X =d cX + Xc

for some random variable Xc, where =d denotes equality in distribution and
the variables on the right are independent. This relation has the form of an au-
toregressive scheme of order 1, thereby making available much of the machinery
of time series (see e.g. [BD]). For both these reasons, the class SD is a prime
candidate for use in modelling asset return distributions.

Three prime examples are to hand:
1. Normal distributions. This is the Gaussian case of the Black-Scholes-Merton
model, relevant to (say) monthly returns (the rule of thumb is that 16 trading
days suffice for aggregational Gaussianity).
2. Hyperbolic distributions. Self-decomposability is due to Halgreen in 1978;
[H]. The log-density has linear asymptotes at ±∞, like the lower branch of a
hyperbola (semi-heavy tails).
3. Student t distributions. Infinite divisibility is due to Grosswald in 1976 [G];
for self-decomposability see e.g. Jurek [J]. The density decays like x−(ν+1),
where ν is the degrees of freedom (heavy tails). Although the limit as ν → ∞
is Gaussian, this passage to the limit skips over the semi-heavy tails above.

Although the modern era in mathematical finance began in 1973 with Black,
Scholes and Merton, mathematical finance itself goes back to 1952, with the
work of Markowitz [Mark]. Markowitz left us two key insights:
1. Look at risk and return together, not separately. (Risk is measured by vari-
ances or covariances, return by means, hence mean-variance theory).
2. Diversify. In order to protect oneself against the uncertainty inseparable
from holding risky stock, one should hold a portfolio – a range of different as-
sets – balanced, so that changes that harm some of our holdings will help others.
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This balance requires negative correlations in our holdings.
Thus by Markowitzian diversification, one should work in d dimensions, where
d is the number of different assets we hold (d may be large, as the range of
investment opportunities open to us is unlimited), and one should start with
the d-vector µ of means and the d×d covariance matrix Σ, which should exhibit
plentiful negative correlations.
The upshot of the above is that our asset returns will be modelled in d dimen-
sions by a self-decomposable distribution, or process, with (µ, Σ) as a parameter.

3. Distributions of type G

We turn now to a suitable subclass of SDd, the class of self-decomposable
distributions in d dimensions. A random d-vector Y, or its distribution ν, is
said to be of type G (following Marcus [Marc] in 1987) if

Y = σε

in distribution, where σ, ε are independent, σ2 is ID and ε ∼ Nd(0, Σ) is mul-
tivariate normal (multinormal). (Other definitions of type G in d dimensions
are in use; see [BNPA2] for details and references.) Then Y has characteristic
function (CF)

ψY(t) := E[e{it
T Y}] = E[E[etT σε]|σ] = E[exp{−1

2
σ2tT Σt}] = φ(

1
2
tT Σt),

(G)
where φ is the Laplace-Stieltjes transform (LST) of σ2. Thus

X := µ + Y

has CF
ψX(t) = eitT µφ(

1
2
tT Σt),

and so X is elliptically contoured, X ∼ ECd(µ,Σ, φ) in the notation of [FKN],
Def. 2.2. Also, as both the definition as an independent product and the above
derivation of the CF show, Y is a normal variance mixture (NVM) [FKN], Ch.2.

Suppose now that the law of σ2 is not only infinitely divisible but also self-
decomposable. That is, for each c ∈ (0, 1),

φ(s) = φ(cs).φc(s), (SD)

for some LST φc. Replace s by 1
2t

T Σt. As in the proof of (G), each of the three
terms is the CF of a d-vector, which shows that Y, X are also SD. They are
thus absolutely continuous ([Sat], Th. 27.13). The density generator g of X thus
exists ([BK3]; [FKN], §2.2.3). Since the density of X is unimodal ([Sat], §53)
and is a function g of the quadratic form (x− µ)T Σ−1(x− µ), g is decreasing.
As σ2 is SD, its Lévy measure is absolutely continuous, with density of the form
k(x)/x with k decreasing (see e.g. [Sat], Cor. 15.11).
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From some points of view, the cumulant-generating functions are more con-
venient. Writing

κX(t) := log ψX(t), κ(t) := log ψY(t), K(s) := log φ(s),

we have
κX(t) = tT µ + κ(t), κ(t) = K(

1
2
tT Σt).

Distributions of type G with σ2 SD are suitable for modelling asset return
distributions in d dimensions; for background and details, see [BK3], [BKS1].

4. Processes of Ornstein-Uhlenbeck type

We now introduce dynamics into the picture. Each SD ν is the limiting law,
of Y∞ say, of the process Y = (Yt : t ≥ 0) of Ornstein-Uhlenbeck (OU) type
given by the solution to the stochastic differential equation

dYt = −cYt + dZt, (OU)

where c > 0 and Z = (Zt : t ≥ 0) is a Lévy process (the background driving Lévy
process or BDLP) whose Lévy measure ν0 satisfies the logarithmic integrability
condition ∫

log+(|x|)dν0(x) < ∞, (log)

and conversely each Lévy process satisfying (log) gives an SD law in this way.
The stochastic representation

Y∞ =d

∫ ∞

0

e−ctdZt

holds, and the cumulants are linked by

κY∞(z) =
∫ ∞

0

κZ1(ze−cs)ds (κ)

([Sat] §17; [AM]), or equivalently

κY∞(z) =
∫ z

0

κZ1(u)du/u, κZ1(z) = zκ′Y∞(z).

Such processes provide a way to model asset returns dynamically: the distri-
butional properties for fixed time are as above, and the process is stationary
(either by starting in the stationary distribution, or by leaving equilibrium to
be approached as time elapses). Of course, such processes are discontinuous
except in the case where the BDLP is Brownian motion and the process of OU
type is the classical Ornstein-Uhlenbeck process.

The covariance is of course undefined except in the L2 case, when the auto-
correlation is as in the classical Ornstein-Uhlenbeck case:

corr(Yt, Yt+u) = exp(−c|u|).
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By superposition of independent processes of OU type, correlations of the form
∑m

i=1
wi exp(−ci|u|)

can be obtained (for example, the case m = 2 allows one to handle both ‘fast’
and ‘slow’ effects, which is often useful). By passage to the limit (or by using
independently scattered random measures and Lévy random fields), correlations
decaying like a power rather than an exponential, and so giving long-range
dependence (LRD), may be constructed. See [BN] for background and details.
Examples.
1. Student processes. The Student t = t(d, ν, Σ) distribution in d dimensions
with ν degrees of freedom (df) and covariance matrix Σ is defined by the density

f(x) =
1

|Σ| 12 .
1√

(πν)d
.
Γ( 1

2 (ν + d))
Γ( 1

2ν)
.(1 +

xT Σ−1x
ν

)−
1
2 (ν+d).

This is thus EC, with density generator of the form

g(x) = c.(1 +
x2

ν
)−

1
2 (ν+d),

and as noted above it is also SD. Further, it is NVM: with the inverse Gamma
distribution IΓ = IΓ(α, β) defined for α, β > 0 by the density

f(x) =
βα

Γ(α)
.x−α−1e−β/x (x > 0),

this is the mixture of Nd(0, Σ) with mixing law IΓ( 1
2ν, 1

2ν). One may thus
find a stationary Markov process Y with limiting law t = t(d, ν, Σ); see Heyde
and Leonenko [HL], Th. 3.2. For Kλ(x) the Bessel function of the third kind
(Macdonald function)

Kλ(x) =
1
2

∫ ∞

0

uλ−1 exp{−1
2
x(u +

1
u
}du,

the CF is given by

eitT µ.K 1
2 (ν+d−1)(

√
νu).(

√
νu)

1
2 (ν+d−1).

21− 1
2 (ν+d−1)

Γ( 1
2 (ν + d− 1))

, u := tT Σt.

See e.g. [HL] (2.5) – (2.7) and Remark 2.2, [KN].
The Student t-distributions have Pareto tail-decay. They are thus useful

for modelling stationary processes with heavy tails. Such tails may occur for
towards the high-frequency end of the data spectrum. For very high-frequency
data, however, the elliptically contoured property may not hold, and details of
market microstructure involving trading hours, lunch breaks and the like become
important. For background, including an empirical study, see e.g. Bingham and
Schmidt [BS].
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2. Hyperbolic processes.
If instead of the inverse Gamma one uses the generalized inverse Gaussian

(GIG) mixing laws, one obtains generalized hyperbolic (GH) distributions as
the limit laws of the OU processes. Such GH laws have semi-heavy tails, and
may occur for medium-frequency data (daily returns, for example); they were
studied in [BK2], and were one of the motivating examples for [BK3]. A different
dynamic version is contained in the work of Barndorff-Nielsen and Perez-Abreu
[BMPA1].

5. Stochastic volatility

In the classical Black-Scholes-Merton model, the volatility of a stock is a
parameter, the standard deviation of the return, measuring the sensitivity of
the price to new information. In the Black-Scholes formula, the option price
does not depend on the mean return, but does depend crucially on the volatil-
ity – which is unobserved, and has to be estimated, whether from past prices
(historic volatility) or by inference from observed option prices (implied volatil-
ity). Because of its importance, volatility has been intensively studied – and
this has revealed that volatility is not constant, but varies. Since the variability
of volatility (or volatility of volatility, ‘vol of vol’) is difficult to account for in
terms of what can be measured (asset price, strike price, time to maturity etc.),
it is natural to take it as stochastic and use a stochastic volatility model (SV).

In the BNS model (Barndorff-Nielsen and Shephard, [BNS1]), one takes the
log-price process x∗ as in the Black-Scholes-Merton model,

dx∗(t) = (µ + βσ2(t))dt + σ(t)dw(t),

where w is a Brownian motion driving the log-price process and the volatility
process σ2(t) is assumed stationary and independent of w. It may thus be
modelled as an OU-process,

dσ2(t) = −λσ2(t)dt + dz(λt),

where z = (z(t))t≥0 is a subordinator independent of w (as the increments of
z are positive, the process σ2 is also positive, as required by its interpretation
as a volatility). Subject to the logarithmic integrability condition on z, the
process σ2 is well-defined as a stationary Markov process, whose equilibrium
distribution is self-decomposable. One may approach the modelling either via
this equilibrium distribution, or via the subordinator. A range of examples are
considered in [BNS1]; see also [BNS2]. They also consider simulation, via series
representations, and fit their model to various financial data sets. Pricing of
financial derivatives is also discussed, and hedging (their model is arbitrage-
free, so equivalent martingale measures exist, but as Lévy-based models are
incomplete, they are not unique). Their approach has been influential, and is
widely used.

The multivariate case is also considered in [BNS1], §6.4, §6.5. In particular,
factor models are considered (§6.5.2). Here, the dimensionality d of our number
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of assets is reduced to some lower effective dimensionality, q say, reflecting the
fact that asset prices often move together, under the influence of a smaller
number of driving mechanisms. For example, q may be the number of industrial
sectors represented in our portfolio, and there may be symmetry within but not
between sectors. See [BKS1], [BKS2] for models of this kind.

For other approaches to stochastic volatility modelling, in one or higher
dimensions and using Lévy or Ornstein-Uhlenbeck processes, see e.g. Barrucci et
al. [BMMRT], Malliavin and Mancino ([MM], or [MT], Ch. 2), Geman, Madan
and Yor [GMY], Carr, Geman, Madan and Yor [CGMY] and Nicolato and
Venardos [NV]. For a comparison of COGARCH (continuous-time generalized
autoregressive conditional heteroscedastic) and Ornstein-Uhlenbeck approaches,
see Klüppelberg, Lindner and Maller [KLM].

In the multidimensional case, one approach is to model the evolution of the
stochastic volatility matrix Σt over time. Here, covariances and correlations
may evolve with time, as happens with actual portfolios. One may harness for
this purpose recent results in the theory of random matrices. For a recent study
of this kind, see Philipov and Glickman [PG], who use Wishart processes (Bru
[Br]), and work in discrete time. Wishart processes form a natural modelling
tool in this area (and also in the theory of random matrices, an area of great
current interest); for background, see [DMDMY], [D]. As in [KLM], comparison
between discrete and continuous time is very interesting, and is the subject of
current work.

In Memoriam, Kazimierz Urbanik (1930-2005)
Like so many others, I was deeply influenced by Urbanik’s work. Part of my

thesis (1969) was influenced by his generalized convolutions, and this influence
extended into several of my papers in the 1970s and 1980s. During this time, I
had the pleasure of getting to know Urbanik, when he visited me in London. I
always considered his work – and this aspect of my own work – as theoretical.
Since my interests expanded into mathematical finance in the 1990s, it has been
a constant source of interest to see how theoretical probability of this kind has
found applications in fields unthought of in earlier times. It is for this reason
that I chose this subject matter for my contribution to the Urbanik Memorial
Volume.
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