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Take expectations: as Ey = µ, Eg(y) ∼ g(µ). So

g(y)− g(µ) ∼ g(y)− Eg(y) ∼ g′(µ)(y − µ).

Square both sides:

[g(y)− g(µ)]2 ∼ [g′(µ)]2(y − µ)2.

Take expectations: as Ey = µ and Eg(y) ∼ g(µ), this says

var(g(y)) ∼ [g′(µ)]2var(y).

Regression. So if

E(yi|xi) = µi, var(yi|xi) = σ2
i ,

we use EDA to try to find some link between the means µi and the variances
σ2
i . Suppose we try σ2

i = H(µi), or

σ2 = H(µ).

Then by above,

var(g(y)) ∼ [g′(µ)]2σ2 = [g′(µ)]2H(µ).

We want constant variance, c2 say. So we want

[g′(µ)]2H(µ) = c2, g′(µ) =
c√
H(µ)

, g(y) = c
∫ dy√

H(y)
.

Note. The idea of variance-stabilising transformations (like so much else in
Statistics) goes back to Fisher (R. A. (Sir Ronald) FISHER (1890-1962)).
He found the density of the sample correlation coefficient r2 in the bivariate
normal distribution – a complicated function involving the population corre-
lation coefficient ρ2, simplifying somewhat in the case ρ = 0 (see e.g. [KS1],
S16.27, 28). But Fisher’s z-transformation of 1921 ([KS1], S16.33)

r = tanh z, z =
1

2
log(

1 + r

1− r
), ρ = tanh ζ, ζ =

1

2
log(

1 + ρ

1− ρ
)
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gives z approximately normal, with variance almost independent of ρ:

z ∼ N(0, 1/(n− 1)).

4. Infinite divisibility; self-decomposability; stability: I ⊃ SD ⊃ S
In the CLT, the limit distribution is normal, N(0, 1), CF exp{−1

2
t2}.

Note that for each n = 1, 2, . . . ,,

exp{−1

2
t2} = [exp{−1

2
t2/n}]n

expresses the CF of the limit law N(0, 1) as the nth power of the CF of
another probability law, N(0, 1/n). So N(0, 1) is the nth convolution of
N(0, 1/n). We think of this as ‘splitting N(0, 1) up into n independent
parts’: N(0, 1) is n times ‘divisible’. We can do this for each n, so N(0, 1) is
‘infinitely divisible’.

Similarly for X Poisson P (λ): the CF is

E[eitX ] =
∞∑
n=0

e−λλn.eitn/n! = exp{−λ(1− eit)} = [exp{−(λ/n)(1− eit)}]n,

so P (λ) is the n-fold convolution of P (λ/n), for each n. So the Poisson
distributions are infinitely divisible (id).

We can extend this to the compound Poisson distribution CP (λ, F ), which
is very important in the actuarial/insurance industry. Suppose that the
number of claims is Poisson P (λ), and that the claim sizes are iid, with
distribution F and CF ϕ. Then conditional on the number of claims being
n, the total claimed in the nth convolution F ∗n, and the CF is ϕn. So the
total X claimed has CF

E[eitX ] =
∞∑
n=0

e−λλn.ϕ(t)n/n! = exp{−λ(1−ϕ(t))} = [exp{−(λ/n)(1−ϕ(t))}]n.

So CP (λ, F ) is the n-fold convolution of CP (λ/n, F ) for each n, so is id.
But this holds much more generally.
Definition. We say that a random variable X, or its distribution F , is in-
finitely divisible (id) if for each n = 1, 2, . . ., X has the same distribution as
the sum of n independent identically distributed random variables. We write
I for the class of infinitely divisible distributions.
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It turns out that I is also the class of limit laws of row-sums of triangu-
lar arrays, as follows. We say that {xnk} (k = 1, . . . , kn, n = 1, 2, . . .) is a
triangular array if for each n, the Xnk are independent;
we say that the array is uniformly asymptotically negligible (uan, more briefly
negligible, if for all ϵ > 0,

P ( max
1≤k≤kn

|Xnk| > ϵ) → 0 (n → ∞).

The following are equivalent:
(i) X is infinitely divisible, X ∈ I;
(ii) X is the limit law of the row-sums

∑
k Xnk of some negligible triangular

array.
The classic reference for this material is Gnedenko and Kolmogorov [GnK].

It turns out also that the CFs of distributions in I can be characterised
explicitly: they are those of the form

E[eitX ] = exp{iat− 1

2
σ2t2 +

∫ ∞

−∞

(
eixt − 1− ixtI(−1,1)

)
dν(t)}, (LK)

where the (positive) measure ν, the Lévy measure, satisfies∫
min(1, |x|2)dν(x) < ∞

(here we omit 0 from the range of the integration – or, we can include it,
perhaps at the cost of changing σ), a, the drift, is real, and σ, the Gaussian
component, is ≥ 0; (a, σ, ν) is called the characteristic triplet of X.

Equation (LK) above is called the Lévy-Khintchine formula (Lévy in
1934, Khintchine1 in 1937, following work of de Finetti in 1929 and 1930,
Kolmogorov in 1932). We return to it (Ch. VI) in connection with stochas-
tic processes – Lévy processes. It gives a semi-parametric representation –
think of (a, σ) as the parametric part and ν as the non-parametric part.2

Note. 1. In the integrand, we need three terms near the origin, but only
two terms away from the origin. As we shall see later, the Lévy measure ν
governs the jumps of the relevant Lévy process. We distinguish between the
‘big’ jumps (only finitely many of these in finite time), and the ‘little’ jumps

1Khintchine as he wrote here in French; Khinchin is the usual transliteration of his
name into English

2Here we follow the British usage of regarding a parameter as finite-dimensional. In
Russian usage, the triplet would be a parametric description.
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(there may be infinitely many in finite time!) We ‘compensate’ the little
jumps by subtracting the mean – hence the I(−1,1). Actually, the ‘1’ here is
arbitrary: any c ∈ (0,∞) would do, but c = 1 is customary and convenient.
2. The a in the triplet corresponds to a deterministic part, at (t is the time),
called the drift; the σ part corresponds to a Gaussian component (Brownian
motion – see VI.1). Any of these three components may be absent.

A triangular array is a two-suffix entity (needing a matrix of distribu-
tions). If we specialise to the one-suffix case (needing a sequence of distri-
butions), then in each row, all the Xnk have the same distribution. This
restricts the class I of infinitely divisible distributions, and we obtain now
the class SD of self-decomposable distributions. These have CFs of the more
restricted form, where

ν(dx) = k(x)dx/|x|, k increasing on (−∞, 0), decreasing on (0,∞).

Again, this is a semi-parametric description.
We can specialise even further, and have an array depending on only

one distribution, F say. We have X1, X2, . . . iid with law F , and form the
sequence of partial sums

Sn := X1 + . . .+Xn;

then S := {Sn} is called a random walk with step-length distribution F , or
generated by F , {Sn} ∼ F . Just as in the CLT, we seek to centre and scale
so as to get a non-degenerate limit law. we ask for a non-degenerate limit of

(Sn − an)/bn,

with an real, bn > 0 (in the CLT an = nµ and bn = σ
√
n with µ the mean

and σ2 the variance, but here we need not have a mean or variance). So we
get a parametric description, with four parameters – two essential, two not.
Type: location and scale.

In one dimension, the mean µ gives us a natural measure of location for
a distribution. The variance σ2, or standard deviation (SD) σ, give us a
natural measure of scale.
Note. The variance has much better mathematical properties (e.g., it adds
over independent, or even uncorrelated, summands). But the SD has the
dimensions of the random variable, which is better from a physical point of
view. As moving between them is mathematically trivial, we do so at will,
without further comment.
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