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Definition. Two distribution functions F'; G have the same type if
G(z) = F(a+ bx)

for some a,b. Then if Y := (X —a)/b, and X ~ F, then Y ~ G.

Stable laws.

The possible limit laws obtainable from centred and scaled random walks
are the stable laws, which form the subclass S of SD. To within type (so
we can take a = 0), they have two parameters, the index o € (0,2] and the
skewness parameter § € [—1,1]. If a = 2, the law is (standard) normal, and
then o =1, v =0. If 0 < @ < 2, then o = 0 and, for some p € [0,1] and
q := 1 — p (the usual notation for Bernoulli trials B(p)), the Lévy measure
has the form

dv =p dx/z"™ on (0,00), q dz/|z)"t™ on (—o0,0),
while the skewness parameter (‘tail-balance parameter’) is
f=pr—q(=2p—1)

(here p + g = 1, but this is a restriction of type, for convenience only — any
value p + ¢ € (0,00) will do). The CF's are

o(t) = exp{—;t2} (normal case, a = 2);
o(t) = exp{—|t|*(1—iB(sgn t) tan ;ﬂa)} O<a<lorl<a<2-1<p<1);

8(t) = exp{~[tl(1 +iB(sgn )2 log ]} (a=1,-1<5<1),

If 8 =0, the law is symmetric (X and —X have the same distribution),
and we obtain the symmetric stable laws with CFs

¢(t) = exp{—|t|"} (0 <a<2).

Densities.
1
For o = 2, we obtain the standard normal law, whose density e 3% /21
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we know.
For a = 1, we obtain the symmetric Cauchy law, whose density

1

f(x) - 7T(]_ +x2)
we studied above.

For =41, a = %, we obtain the Lévy density (Problems),

For other parameter values, there is no explicit formula, but one can ob-
tain series expansions.
One-sided stable laws.

The Lévy measure is also called the spectral measure. When f = +1,
p = 1,q = 0, all its mass is on the positive half-line — the spectrally positive
case: only positive jumps, and decrease takes place continuously, rather than
by jumping. Similarly for the spectrally negative case § = —1, p =0,q = 1:
all mass on the negative half-line; only negative jumps.
Stable laws and tails

It is a general property of id laws F' that their tail behaviour is similar
to that of their Lévy measures v. Stable laws have finite ath moments for
a < « and infinite ath moment for a > «. Thus for &« = 2 (normal case)
all moments are finite and the CF is entire; for 1 < o < 2 the mean exists
but the variance does not; for 0 < a < 1 the mean does not exist. Such
behaviour is described as having heavy tails. These are important, in at least
two areas:
1. Insurance. It is the large claims that are dangerous for an insurance com-
pany — indeed, potentially lethal. The frequency of large claims is governed
by the tail decay.
2. Finance. The standard benchmark model of mathematical finance, the
Black-Scholes(-Merton) model has normal (actually, log-normal) tails. But
most real financial data show much fatter tail behaviour than this. Stable
laws have been used to model tails of financial data. So too have Student
t-distributions (which, unlike stable laws, are not restricted to o < 2).



IV. NORMAL DISTRIBUTION THEORY

1. Regression

In regression (see e.g. [BF]), we have data yi,...,y,, arranged as a col-
umn n-vector y. We seek to explain the data parsimoniously, in terms of p
parameters [, ..., [, (arranged as a column p-vector [3), via linear combi-
nations of explanatory variables (predictor variables, covariates, regressors,
...), plus some error, which we model as an n-vector ¢, whose components ¢;
are assumed iid N(0,0%). Then the model equation is

y=Ap+e. (ME)

Here the matrix A is n X p; p << n ("p is much less than n”) — n is the
sample size (the larger the better), p the number of parameters (as small as
possible, by the Principle of Parsimony); A is called the design matriz. We
restrict attention to the case when A has full rank, p (otherwise, eliminate
superfluous regressors to reduce to this). From the model equation

Y, = Zp aijﬁja €; 11d N(O, 0'2),

j=1

the likelihood is

1 n 1 »

L= — o Il exp{=g i = 320 auf)*/o%)
1 L ,

T gnopin exp{=5>_,_ (i =D, a5)° /0",

and the log-likelihood is

1 n
¢ :=log L = const —nlogo — i[zizl(yi — Z?Zlaijﬁj)Q]/o'Q.

As before, we use Fisher’s Method of Maximum Likelihood, and maximise
with respect to §,.: 9¢/9p, = 0 gives

n p
Zizlair(yi o ijlaijﬂj) =0 (7“ = 17 e 7p)7

or

Zé):l (ijla’”’aij)ﬁj = Z:;lairyi-



Write C' = (¢;;) for the p x p matrix
C .= ATA,
(called the information matriz), which we note is symmetric: C* = C. Then

Cij = ZkZI(AT)ikAkj = Zkzlakiakj-
So this says
p n n
ijlcrjﬁj = Zizlairyi = Zi:l (AT)myz

In matrix notation, this is

(CB), = (ATZ/)T (r=1,...,p),

or combining,

CB = Ay, C:=ATA (NE)

These are the normal equations.

As A has full rank, C' is positive definite (x7Cx > 0 for all vectors z # 0)
([BF], Lemma 3.3), so we can solve the normal equations to obtain our least-
squares estimates of 5, namely

B=C"1ATy.
Write
P :=AC'AT
for the projection matriz of A. Note that
P2 = ACT'ATACT'AT = ACT'CCAT = ACT'AT = P,

so P is idempotent, i.e. is a projection (see e.g. [BF], Lemma 3.18). Also, as
C' is symmetric,

PT = A(C™H)TAT = A(CT)'A= ACT'AT = P

P is symmetric, so is a symmetric projection. Similarly, so is I — P.

Call a linear transformation P : V — V a projection onto Vi along Vs if
V is the direct sum V = V; @ Vs, and if @ = (21, 22)7 with Px = ;. Then
(check) I — P is a projection onto V5 along V;. Also

PI—-P)=P-P*=P-P=0:

P, I — P are orthogonal projections.



