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Definition. Two distribution functions F , G have the same type if

G(x) = F (a+ bx)

for some a, b. Then if Y := (X − a)/b, and X ∼ F , then Y ∼ G.

Stable laws.
The possible limit laws obtainable from centred and scaled random walks

are the stable laws, which form the subclass S of SD. To within type (so
we can take a = 0), they have two parameters, the index α ∈ (0, 2] and the
skewness parameter β ∈ [−1, 1]. If α = 2, the law is (standard) normal, and
then σ = 1, ν = 0. If 0 < α < 2, then σ = 0 and, for some p ∈ [0, 1] and
q := 1 − p (the usual notation for Bernoulli trials B(p)), the Lévy measure
has the form

dν = p dx/x1+α on (0,∞), q dx/|x|1+α on (−∞, 0),

while the skewness parameter (‘tail-balance parameter’) is

β = p− q (= 2p− 1)

(here p + q = 1, but this is a restriction of type, for convenience only – any
value p+ q ∈ (0,∞) will do). The CFs are

ϕ(t) = exp{−1

2
t2} (normal case, α = 2);

ϕ(t) = exp{−|t|α(1−iβ(sgn t) tan
1

2
πα)} (0 < α < 1 or 1 < α < 2,−1 ≤ β ≤ 1);

ϕ(t) = exp{−|t|(1 + iβ(sgn t)
2

π
log |t|} (α = 1,−1 ≤ β ≤ 1).

If β = 0, the law is symmetric (X and −X have the same distribution),
and we obtain the symmetric stable laws with CFs

ϕ(t) = exp{−|t|α} (0 < α ≤ 2).

Densities.
For α = 2, we obtain the standard normal law, whose density e−

1
2
x2
/
√
2π
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we know.
For α = 1, we obtain the symmetric Cauchy law, whose density

f(x) =
1

π(1 + x2)

we studied above.
For β = +1, α = 1

2
, we obtain the Lévy density (Problems),

For other parameter values, there is no explicit formula, but one can ob-
tain series expansions.
One-sided stable laws.

The Lévy measure is also called the spectral measure. When β = +1,
p = 1, q = 0, all its mass is on the positive half-line – the spectrally positive
case: only positive jumps, and decrease takes place continuously, rather than
by jumping. Similarly for the spectrally negative case β = −1, p = 0, q = 1:
all mass on the negative half-line; only negative jumps.
Stable laws and tails

It is a general property of id laws F that their tail behaviour is similar
to that of their Lévy measures ν. Stable laws have finite ath moments for
a < α and infinite ath moment for a > α. Thus for α = 2 (normal case)
all moments are finite and the CF is entire; for 1 < α < 2 the mean exists
but the variance does not; for 0 < α < 1 the mean does not exist. Such
behaviour is described as having heavy tails. These are important, in at least
two areas:
1. Insurance. It is the large claims that are dangerous for an insurance com-
pany – indeed, potentially lethal. The frequency of large claims is governed
by the tail decay.
2. Finance. The standard benchmark model of mathematical finance, the
Black-Scholes(-Merton) model has normal (actually, log-normal) tails. But
most real financial data show much fatter tail behaviour than this. Stable
laws have been used to model tails of financial data. So too have Student
t-distributions (which, unlike stable laws, are not restricted to α ≤ 2).
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IV. NORMAL DISTRIBUTION THEORY

1. Regression
In regression (see e.g. [BF]), we have data y1, . . . , yn, arranged as a col-

umn n-vector y. We seek to explain the data parsimoniously, in terms of p
parameters β1, . . . , βp (arranged as a column p-vector β), via linear combi-
nations of explanatory variables (predictor variables, covariates, regressors,
...), plus some error, which we model as an n-vector ϵ, whose components ϵi
are assumed iid N(0, σ2). Then the model equation is

y = Aβ + ϵ. (ME)

Here the matrix A is n × p; p << n (”p is much less than n”) – n is the
sample size (the larger the better), p the number of parameters (as small as
possible, by the Principle of Parsimony); A is called the design matrix. We
restrict attention to the case when A has full rank, p (otherwise, eliminate
superfluous regressors to reduce to this). From the model equation

yi =
∑p

j=1
aijβj, ϵi iid N(0, σ2),

the likelihood is

L =
1

σn2π
1
2
n
.
∏n

i=1
exp{−1

2
(yi −

∑p

j=1
aijβj)

2/σ2}

=
1

σn2π
1
2
n
. exp{−1

2

∑n

i=1
(yi −

∑p

j=1
aijβj)

2/σ2},

and the log-likelihood is

ℓ := logL = const− n log σ − 1

2
[
∑n

i=1
(yi −

∑p

j=1
aijβj)

2]/σ2.

As before, we use Fisher’s Method of Maximum Likelihood, and maximise
with respect to βr: ∂ℓ/∂βr = 0 gives∑n

i=1
air(yi −

∑p

j=1
aijβj) = 0 (r = 1, . . . , p),

or ∑p

j=1
(
∑n

i=1
airaij)βj =

∑n

i=1
airyi.
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Write C = (cij) for the p× p matrix

C := ATA,

(called the information matrix), which we note is symmetric: CT = C. Then

cij =
∑n

k=1
(AT )ikAkj =

∑n

k=1
akiakj.

So this says ∑p

j=1
crjβj =

∑n

i=1
airyi =

∑n

i=1
(AT )riyi.

In matrix notation, this is

(Cβ)r = (ATy)r (r = 1, . . . , p),

or combining,
Cβ = ATy, C := ATA. (NE)

These are the normal equations.
As A has full rank, C is positive definite (xTCx > 0 for all vectors x ̸= 0)

([BF], Lemma 3.3), so we can solve the normal equations to obtain our least-
squares estimates of β, namely

β̂ = C−1ATy.

Write
P := AC−1AT

for the projection matrix of A. Note that

P 2 = AC−1ATAC−1AT = AC−1CC−1AT = AC−1AT = P,

so P is idempotent, i.e. is a projection (see e.g. [BF], Lemma 3.18). Also, as
C is symmetric,

P T = A(C−1)TAT = A(CT )−1A = AC−1AT = P :

P is symmetric, so is a symmetric projection. Similarly, so is I − P .
Call a linear transformation P : V → V a projection onto V1 along V2 if

V is the direct sum V = V1 ⊕ V2, and if x = (x1, x2)
T with Px = x1. Then

(check) I − P is a projection onto V2 along V1. Also

P (I − P ) = P − P 2 = P − P = 0 :

P , I − P are orthogonal projections.
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