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Lecture 14. 8.11.2012 (half-hour: Problems)

2. Quadratic forms in normal variates
In deriving the normal equations, we minimised the total sum of squares

SS := (y − Aβ)T (y − Aβ)

w.r.t. β. The minimum value is called the sum of squares for error,

SSE := (y − Aβ̂)T (y − Aβ̂).

From the normal equations (NE) and the definition of the projection matrix
P ,

Aβ̂ = Py.

So

SSE = (y− Py)T (y− Py) = yTy− yTPy− yTPy + yTP TPy = yT (I − P )y,

using P T = P and P 2 = P , and a little matrix algebra (see e.g. [BF], 3.4)
gives also

SSE = (y − Aβ)T (I − P )(y − Aβ).

The sum of squares for regression is

SSR := (b̂− β)TC(β̂ − β).

Again, a little matrix algebra (see e.g. [BF], 3.4) gives

SSR = (y − Aβ)TP (y − Aβ).

So
SS = SSR + SSE :

(y−Aβ)T (y−Aβ) = (y−Aβ)TP (y−Aβ)+(y−Aβ)T (I−P )(y−Aβ); (SSD)

either of both of these are called the sum-of-squares decomposition. Now
from the model equations (ME), y − Aβ = ϵ is a random n-vector whose
components are iid N(0, σ2). So (SSD) decomposes a quadratic form in
normal variates ϵ = (ϵ1, . . . , ϵn)

T with matrix I into the sum of two quadratic
forms with matrices P and I − P . Now by Craig’s theorem ([KS1], (15.55))
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such quadratic forms with matrices A, B are independent iff AB = 0. But
since

P (I − P ) = P − P 2 = P − P = 0,

this shows that SSR and SSE are independent. Thus (SSD) decomposes
the total sum of squares into a sum of independent sums of squares – the
main tool used in regression.

We recall some results from Linear Algebra (see e.g. [BF] Ch. 3 and
the references cited there). We need the trace trace(A) of a square matrix
A = (aij), defined as the sum of its diagonal elements:

trace(A) =
∑

aii.

(i) A real symmetric matrix A can be diagonalised by an orthogonal trans-
formation O to a diagonal matrix D:

OTAO = D.

(ii) For A idempotent (a projection), its eigenvalues are 0 or 1.
(iii) For A idempotent, its trace is its rank.
So if we have a quadratic form xTPx with P a projection of rank r and
x an n-vector (x1, . . . , xn)

T with xi iid N(0, σ2), we can diagonalise by an
orthogonal transformation y = Ox to a sum of squares of r normals (wlog
the first r):

xTPx = y21 + . . .+ y2r , yi iid N(0, σ2).

So by definition of the chi-square distribution,

xTPx ∼ σ2χ2(r).

Sums of Projections
Suppose that P1, . . . , Pk are symmetric projection matrices with sum the

identity:
I = P1 + . . .+ Pk.

Take the trace of both sides: the n× n identity matrix I has trace n. Each
Pi has trace its rank ni, so as trace is additive

n = n1 + . . .+ nk.

Then squaring,

I = I2 =
∑

i
P 2
i +

∑
i<j

PiPj =
∑

i
Pi +

∑
i<j

PiPj.
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