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Taking the trace,

n =
∑

ni +
∑

i<j
trace(PiPj) = n+

∑
i<j

trace(PiPj) :∑
i<j

trace(PiPj) = 0.

Now

trace(PiPj) = trace(P 2
i P

2
j ) (Pi, Pj projections)

= trace((PjPi).(PiPj)) (trace(AB) = trace(BA))

= trace((PiPj)
T .(PiPj)) ((AB)T = BTAT ; Pi, Pj symmetric)

≥ 0,

since for a matrix M

trace(MTM) =
∑

i
(MTM)ii

=
∑

i

∑
j
(MT )ij(M)ji

=
∑

i

∑
j
m2

ij

≥ 0.

So we have a sum of non-negative terms being zero. So each term must be
zero. That is, the square of each element of PiPj must be zero. So each
element of PiPj is zero, so matrix PiPj is zero:

PiPj = 0 (i ̸= j).

This is the condition that the linear forms P1x, . . . , Pkx be independent (be-
low). Since the Pix are independent, so are the (Pix)

T (Pix) = xTP T
i Pix,

i.e. xTPix as Pi is symmetric and idempotent. That is, the quadratic forms
xTP1x, . . . , x

TPkx⃗ are also independent.
We now have

xTx = xTP1x+ . . .+ xTPkx.

The left is σ2χ2(n); the ith term on the right is σ2χ2(ni).
We summarise our conclusions.
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Theorem (Chi-Square Decomposition Theorem). If

I = P1 + . . .+ Pk,

with each Pi a symmetric projection matrix with rank ni, then
(i) the ranks sum:

n = n1 + . . .+ nk;

(ii) each quadratic form Qi := xTPix is chi-squared:

Qi ∼ σ2χ2(ni);

(iii) the Qi are mutually independent.

This fundamental result gives all the distribution theory commonly needed
for the Linear Model (for which see e.g. [BF]). In particular, since F -
distributions are defined in terms of distributions of independent chi-squares,
it explains why we constantly encounter F -statistics, and why all the tests
of hypotheses that we encounter will be F -tests. This is so throughout the
Linear Model – Multiple Regression, as here, Analysis of Variance, Analysis
of Covariance and more advanced topics.
Note. The result above generalises beyond our context of projections. With
the projections Pi replaced by symmetric matrices Ai of rank ni with sum
I, the corresponding result (Cochran’s Theorem, 1934, also known as the
Fisher-Cochran theorem) is that (i), (ii) and (iii) are equivalent. The proof is
harder (one needs to work with quadratic forms, where we were able to work
with linear forms). For monograph treatments, see e.g. Rao [R], sections
1c.1 and 3b.4 and Kendall & Stuart [KS1], sections 15.16 - 15.21.

3. The multivariate normal (Gaussian) distribution
In n dimensions, for a random n-vector X = (X1, · · · , Xn)

T , one needs
(i) a mean vector µ = (µ1, · · · , µn)

T with µi = EXi, µ = E[X];
(ii) a covariance matrix Σ = (σij), with σij = cov(Xi, Xj): Σ = cov(X).

First, note how mean vectors and covariance matrices transform under
linear changes of variable:

Proposition. If Y = AX+b, with Y, b m-vectors, A an m×n matrix and X
an n-vector, (i) the mean vectors are related by E[Y ] = AE[X]+ b = Aµ+ b;
(ii) the covariance matrices are related by ΣY = AΣXA

T .
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Proof. (i) This is just linearity of the expectation operator E: Yi =
∑

jaijXj+
bi, so

EYi =
∑

j
aijEXj + bi =

∑
j
aijµj + bi,

for each i. In vector notation, this is µY = Aµ+ β.

(ii) Yi − EYi =
∑

kaik(Xk − EXk) =
∑

kaik(Xk − µk), so

cov(Yi, Yj) = E[
∑

r
air(Xr−µr)

∑
s
ajs(Xs−µs)] =

∑
rs
airajsE[(Xr−µr)(Xs−µs)]

=
∑

rs
airajsσrs = (AΣAT )ij,

identifying the elements of the matrix product AΣAT . //

Corollary. Covariance matrices Σ are non-negative definite.

Proof. Let a be any n × 1 matrix (row-vector of length n); then Y := aX
is a scalar. So Y = Y T = XaT . Taking a = AT , b = 0 above, Y has
variance [= 1× 1 covariance matrix] aTΣa. But variances are non-negative.
So aTΣa ≥ 0 for all n-vectors a. This says that Σ is non-negative definite. //

We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem (Cramér-Wold device). The distribution of a random n-vector
X is completely determined by the set of all one-dimensional distributions of
linear combinations tTX =

∑
itiXi, where t ranges over all fixed n-vectors.

Proof. Y := tTX has CF

ϕY (s) := E[exp{isY }] = E[exp{istTX}].

If we know the distribution of each Y , we know its CF ϕY (s). In partic-
ular, taking s = 1, we know E[exp{itTX}]. But this is the CF of X =
(X1, · · · , Xn)

T evaluated at t = (t1, · · · , tn)T . But this determines the distri-
bution of X. //

The Cramér-Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage
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of handling the full-rank and singular cases together (ρ = ±1 as well as
−1 < ρ < 1 for the bivariate case).

Definition. An n-vector X has an n-variate normal (or Gaussian) distribu-
tion iff aTX is univariate normal for all constant n-vectors a.

Proposition. (i) Any linear transformation of a multinormal n-vector is
multinormal;
(ii) Any vector of elements from a multinormal n-vector is multinormal.
In particular, the components are univariate normal.

Proof. (i) If y = AX + c (A an m×n matrix, c an m-vector) is an m-vector,
and b is any m-vector,

bTY = bT (AX + c) = (bTA)X + bT c.

If a = AT b (an m-vector), aTX = bTAX is univariate normal as X is multi-
normal. Adding the constant bT c, bTY is univariate normal. This holds for
all b, so Y is m-variate normal.
(ii) Take a suitable matrix A of 1s and 0s to choose the required sub-vector.
//

Theorem. If X is n-variate normal with mean µ and covariance matrix Σ,
its CF is

ϕ(t) := E[exp{itTX} = exp{itTµ− 1

2
tTΣt}.

Proof. By the Proposition, Y := tTX has mean tTµ and variance tTΣt.
By definition of multinormality, Y = tTX is univariate normal. So Y is
N(tTµ, tTΣt). So Y has CF

ϕY (s) := E[exp{isY }] = exp{istTµ− 1

2
tTΣt}.

But E[(eisY )] = E[exp{istTX}], so taking s = 1 (as in the proof of the
Cramér-Wold device),

E[exp{itTX} = exp{itTµ− 1

2
tTΣt},

giving the CF of X as required. //
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