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Given an SP X, it is sometimes possible to improve the regularity of its
paths without changing its distribution (that is, without changing its finite-
dimensional distributions). For background on such results (separability,
measurability, versions, regularization etc.) see e.g. [D].

There are several ways to define ’sameness’ of two processes X and Y .
We say
(i) X and Y have the same finite-dimensional distributions if, for any integer
n and {t1, · · · , tn} a finite set of time points in [0,∞), the random vectors
(X(t1), . . . , X(tn)) and (Y (t1), . . . , Y (tn)) have the same distribution;
(ii) Y is a modification of X if, for every t ≥ 0, we have P (Xt = Yt) = 1.

A process is called progressively measurable if the map (t, ω) 7→ Xt(ω)
is measurable, for each t ≥ 0. Progressive measurability holds for adapted
processes with right-continuous (or left-continuous) paths – and so always in
the generality in which we work.

A random variable τ : Ω → [0,∞] is a stopping time if {τ ≤ t} ∈ Ft for
all t ≥ 0.

For a set A ⊂ Rd and a stochastic process X, we can define the hitting
time of A for X as

τA := inf{t > 0 : Xt ∈ A}.

For our usual situation (RCLL processes and Borel sets) hitting times are
stopping times.

We will also need the stopping time σ-algebra Fτ defined as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft.

Intuitively, Fτ represents the events known at time τ .
The continuous-time theory is technically much harder than the discrete-

time theory, for two reasons:
1. questions of path-regularity arise in continuous time but not in discrete
time;
2. uncountable operations (such as taking the supremum over an interval)
arise in continuous time. But measure theory is constructed using countable
operations: uncountable operations risk losing measurability.
This is why discrete and continuous time are often treated separately.
Conditional expectation.

The central definition of modern probability (Williams’ phrase, [W]) is
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due to Kolmogorov in 1933, and explained in Doob’s Lemma above. The
conditional expectation of a random variable X given a σ-field C, E[X|C], is
any C-measurable random variable that ‘integrates the right sets the right
way’, i.e. satisfies∫

C
E[X|C]dP =

∫
C
XdP ∀C ∈ C, a.s. (CE)

This captures the idea of conditioning given known information, which you
may have met in elementary Probability, or Statistics (e.g. regression). We
will see it in use in V.2 below. For more on this, see e.g. SP, L 15, 16.
2. Martingales: discrete time.

We refer for a fuller account to [W]. The classic exposition is Ch. VII in
Doob’s book [D] of 1953.
Definition. A process X = (Xn) in discrete time is called a martingale (mg)
relative to ({Fn}, P ) if
(i) X is adapted (to {Fn});
(ii) E|Xn| < ∞ for all n;
(iii) [Xn|Fn−1] = Xn−1 P -a.s.
X is a supermartingale (supermg) if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale (submg) if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Martingales have a useful interpretation in terms of dynamic games: a mg
is ‘constant on average’, and models a fair game; a supermg is ‘decreasing
on average’, and models an unfavourable game; a submg is ‘increasing on
average’, and models a favourable game.
Note. 1. Mgs have many connections with harmonic functions in probabilistic
potential theory. Supermgs correspond to superharmonic functions, submgs
to subharmonic functions.
2. X is a submg (supermg) iff −X is a supermg (submg); X is a mg if and
only if it is both a submg and a supermg.
3. (Xn) is a mg iff (Xn −X0) is a mg. So w.l.o.g. take X0 = 0 if convenient.
4. If X is a martingale, then for m < n using the iterated conditional
expectation (tower) property and the martingale property repeatedly (all
equalities are in the a.s.-sense)

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] = E[Xn−1|Fm] = . . . = E[Xm|Fm] = Xm,
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and similarly for submgs, supermgs. See e.g. SP, L16, 17.
Martingale convergence

One reason why martingales (mgs) are so useful is that they have good
convergence properties – under suitable conditions. We state some of the key
results, without proof; for details, see e.g. SP, L18-19.

Call X = (Xn) L1-bounded if supnE[|Xn|] < ∞, i.e.

E[|Xn|] ≤ K for all n,

for some constant K.

Doob’s (Sub-)Martingale Convergence Theorem. An L1-bounded
(sub)martingale is a.s. convergent.

The proof depends on Doob’s Upcrossing Inequality (see e.g. SP L18).

Uniform integrability (UI). Call Xn uniformly integrable (UI) if

supn

∫
{|Xn|>a}

|Xn|dP → 0 (a → ∞).

If the index set {1, 2, . . .} of the filtration (Fn) extends to {1, 2, . . . ,∞} so
that {Xn : n = 1, 2, . . . ,∞} is a (sub-)mg w.r.t. this filtration, the (sub-)mg
is called closed, with closing (or last) element X∞.

Theorem. Let (Xn) be a UI submg. Then supnE[X+
n ] < ∞, and Xn con-

verges to a limit X∞ a.s. and in L1, which closes the submg: X = (Xn) is a
closed submg, closed by X∞.

Theorem. Xn is a UI mg iff Xn is a closed mg iff there exists Y ∈ L1 with

Xn = E[Y |Fn].

Then Xn → E[Y |F∞] a.s. and in L1.

Corollary (UI Mg Convergence Theorem). For a mg X = (Xn), the
following are equivalent:
(i) X is UI;
(ii) X converges a.s. and in L1 (to X∞, say);
(iii) X is closed by a random variable Y : Xn = E[Y |Fn];
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(iv) X is closed by its limit X∞: Xn = E[X∞|Fn].

Note. 1. The UI mgs – equivalently by above the closed mgs – (also called
regular mgs) are the ‘nice’ mgs. Note that all the randomness is in the closing
rv Y = X∞. As time progresses, more of Y is revealed as more information
becomes available. (Think of progressive revelation, as in – choose your
metaphor – a ‘striptease’, or, ‘the Day of Judgement’.)
2. UI (or closed) mgs are also common, and crucially important in Mathe-
matical Finance. There, one does two things: (i) discount all asset prices (so
as to work with real rather than nominal prices); (ii) change from the real-
world probability measure P to an equivalent martingale measure Q (EMM,
or risk-neutral measure) under which discounted asset prices S̃t become (Q)-
mgs:

S̃t = EQ[S̃T |Ft]

(here T < ∞ is typically the expiry time of an option). See e.g. [BK], esp.
Ch. 4.

Matters are simpler in the Lp case for p ∈ (1,∞). Call X = (Xn) Lp-
bounded if

supn∥Xn∥p < ∞

(so in particular each Xn ∈ Lp). We may take p = 2 for simplicity, and
because of the link with Hilbert-space methods and the important Kunita-
Watanabe Inequalities. We quote (for proof see e.g. SP L19)

Theorem (Lp-Mg Theorem). If p > 1, an Lp-bounded mg Xn is UI, and
converges to its limit X∞ a.s. and in Lp.

3. Martingales in continuous time
A stochastic process X = (X(t))0≤t<∞ is a martingale (mg) relative to

({Ft}, P ) if
(i) X is adapted, and E|X(t)| < ∞ for all ≤ t < ∞;
(ii) E[X(t)|Fs] = X(s) P - a.s. (0 ≤ s ≤ t),
and similarly for submgs (with ≤ above) and supermgs (with ≥).

In continuous time there are regularization results, under which one can
take X(t) RCLL in t (basically t → EX(t) has to be right-continuous). Then
the analogues of most results for discrete-time martingales hold true.
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