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Interpretation. Martingales model fair games. Submartingales model
favourable games. Supermartingales model unfavourable games.

Martingales represent situations in which there is no drift, or tendency,
though there may be lots of randomness. In the typical statistical situation
where we have data = signal + noise, martingales are used to model the noise
component. It is no surprise that such decompositions occur constantly in
more advanced work (with ‘semi-martingales’).
Closed martingales.

As before, some martingales are of the form

Xt = E[X|Ft] (t ≥ 0)

for some integrable random variable X. Then X is said to close (Xt), which
is called a closed (or closable) martingale, or a regular martingale. As before,
closed martingales have specially good convergence properties:

Xt → X∞ (t → ∞) a.s. and in L1,

and then also
Xt = E[X∞|Ft], a.s.

Again, this property is equivalent also to uniform integrability (UI):

supt

∫
{|Xt|>x}

|Xt|dP → 0 (x → ∞).

These are the mgs that are crucial in mathematical finance. Here, the clos-
ing random variable is the payoff of the option. The option price is what
one would expect – the (conditional) expectation of the payoff, given what
one knows. This intuition is exactly right (and part of the crucial Funda-
mental Theorem of Asset Pricing), provided that one can bring martingale
theory to bear. For this, one needs to change from the real-world measure to
the equivalent martingale measure (EMM) – the measure making discounted
prices martingales (recall: EMM exists iff no arbitrage; EMM unique iff mar-
ket complete).

Doob-Meyer Decomposition. One version in continuous time of the Doob
decomposition in discrete time – called the Doob-Meyer (or the Meyer) de-
composition – follows next but needs one more definition. A process X is
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called of class (D) if

{Xτ : τ a finite stopping time}

is uniformly integrable. Then a (càdlàg, adapted) process Z is a submartin-
gale of class (D) if and only if it has a decomposition

Z = Z0 +M + A

with M a uniformly integrable martingale and A a predictable increasing
process, both null at 0. This composition is unique.

Among the contrasts with the discrete case, we mention that the Doob-
Meyer decomposition, easy in discrete time, is a deep result in continuous
time.
Square-integrable Martingales.

For M = (Mt) a martingale, write M ∈ M2 if M is L2-bounded:

suptE(M2
t ) < ∞,

and M ∈ M2
0 if further M0 = 0. Write cM2, cM2

0 for the subclasses of
continuous M .

As before, Lp-bounded mgs are convergent for p > 1. So for M ∈ M2,M
is convergent:

Mt → M∞ a.s. and in mean square

for some random variable M∞ ∈ L2. One can recover M from M∞ by

Mt = E[M∞|Ft].

The bijection
M = (Mt) ↔ M∞

is in fact an isometry, and as M∞ ∈ L2, a Hilbert space, so too is M2.
Quadratic Variation.

A non-negative right-continuous submartingale is of class (D). So it has
a Doob-Meyer decomposition. We specialize this to X2, with X ∈ cM2:

X2 = X2
0 +M + A,

with M a continuous martingale and A a continuous (so predictable) and
increasing process. We write

⟨X⟩ := A
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here, and call ⟨X⟩ the quadratic variation of X. We shall see later that this
is a crucial tool for the stochastic integral. There is a variant on ⟨X⟩ (the
’angle-bracket process’), called [X] (the ’square-bracket process’), needed to
handle jumps.
Quadratic Covariation.

We write ⟨M,M⟩ for ⟨M⟩, and extend ⟨.⟩ to a bilinear form ⟨., .⟩ with
two different arguments by the polarization identity:

⟨M,N⟩ := 1

4
(⟨M +N,M +N⟩ − ⟨M −N,M −N⟩.

(The polarization identity reflects the Hilbert-space structure of the inner
product ⟨., .⟩.) If N is of finite variation, M ± N has the same quadratic
variation as M , so ⟨M,N⟩ = 0.

Where there is a Hilbert-space structure, one can use the language of
projections, of Pythagoras’ theorem etc., and draw diagrams as in Euclidean
space. The right way to treat the Linear Model of statistics is in such terms
(analysis of variance = ANOVA, sums of squares etc.)
L1, L2 and Lp.

We quote from Functional Analysis: for p ∈ (1,∞), define the conjugate
index q ∈ (1,∞) by

1

p
+

1

q
= 1.

Then Lp and Lq are dual: each continuous linear functional on Lp can be
identified with a function g ∈ Lq, acting on functions f ∈ Lp by

f 7→ (f, g) :=
∫
fg

(fg ∈ L1, by Hölder’s inequality). So for p = 2, q = 2 also: L2 is self-
dual. L2 is Hilbert space, H, which has an inner product, (f, g) :=

∫
fg (or

(f, g) :=
∫
fg in the complex case). This is one reason why L2 is the nicest

of the Lp-spaces, and why Lp for p ∈ (1,∞) is nicer than L1.
For p > 1, Lp-mgs are UI, and so ‘nice’. For p = 1, this no longer holds:

what is needed instead is the ”L logL” condition,

E[|X| log+ |X|] < ∞.

Also important in Functional Analysis are the Hardy spaces, Hp. Hp can
be identified with a subspace of Lp. For p ∈ (1,∞), the dual of Hp is Hq, as
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with Lp-spaces. But H1 has dual BMO, the space of functions of bounded
mean oscillation, which has many connections with martingale theory.

4. Other classes of process
Gaussian Processes

A vectorX ∈ Rn has themultivariate normal distribution in n dimensions
if all linear combinations a′X =

∑n
i=1aiXi of its components are normally

distributed (in one dimension). Such a distribution is determined by a vector
µ of means and a non-negative definite n × n matrix Σ of covariances, and
is written N(µ,Σ). Then X has distribution N(µ,Σ) if and only if it has
characteristic function

ϕX(t) := E[exp {it′ ·X}] = exp{it′ · µ− 1

2
t′Σt} (t ∈ Rn).

Further, if Σ is positive definite (so non-singular), X has density

fX(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
,

by Edgeworth’s formula. A process X = (X(t))t≥0 is Gaussian if all its finite-
dimensional distributions are Gaussian. Such a process can be specified by:
(i) a measurable function µ = µ(t) with E(X(t)) = µ(t), the mean function;
(ii) a non-negative definite function σ(s, t) with σ(s, t) = cov(X(s), X(t)),
the covariance function.

Gaussian processes have many interesting properties. Among these, we
quote Belayev’s dichotomy: with probability one, the paths of a Gaussian
process are either continuous, or extremely pathological: for example, un-
bounded above and below on any time interval, however short. Naturally,
we shall confine ourselves here to continuous Gaussian processes.
Examples.
1. Brownian motion (VI.1): mean 0, covariance σ(s, t) := min(s, t).
2. Brownian bridge (‘Brownian motion started at 0 and conditioned to be at
0 at time 1’): mean 0, covariance min(s, t)− st.
3. Ornstein-Uhlenbeck process (the prototypical stationary Gaussian Markov
process): mean 0, covariance e−β|s−t|.
Markov Processes
X is Markov if for each t, each A ∈ σ(X(s) : s > t) (the ‘future’) and
B ∈ σ(X(s) : s < t) (the ‘past’),

P (A|X(t), B) = P (A|X(t)).
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