
pfsl2.tex
Lecture 2. 10.10.2012
Definition. A σ-field (or σ-algebra) A is a class containing the whole set,
closed under complements, and closed under countable disjoint unions
(the ”σ” here is from the German Summe = sum – the old-fashioned notation
for a union is a sum).

The natural domain of definition of a measure is a σ-field:
Definition. A measurable space is a pair (Ω,A), where A is a σ-field of sets
A ⊂ Ω.
A measure space is a triple (Ω,A, µ), where µ is a measure defined on A (that
is, µ(A) is defined on all the sets A ⊂ Ω).
A probability measure is a measure P of mass 1, P (Ω) = 1; then (Ω,A, P ) is
a probability space.

Axiomatic Probability Theory as Measure Theory for measures of mass
1 is due to A. N. KOLMOGOROV (1903-87) in his 1933 book Grundbegriffe
der Wahrscheinlichkeitsrechnung.
Examples. On the real line R, the intervals I; [a, b] are (Lebesgue) measur-
able, with (Lebesgue) measure

µ([a, b]) := b− a. (L)

The σ-field generated by the intervals (= smallest σ-field containing the
intervals, = intersection of all σ-fields containing the intervals – this is a σ-
field) is called the Borel σ-field B; its sets are called the Borel sets B (Emile
BOREL (1871-1956, thesis of 1893). One can check that it does not matter
whether we use closed intervals [a, b], open ones (a, b), half-open ones (a, b],
[a, b), semi-infinite intervals (−∞, a], etc. – they all generate the same σ-
field.

A subset of a Borel set of measure 0 need not be a Borel set. Nevertheless,
one feels that ”a subset of a set of measure 0 should also have measure 0” –
or, as we call sets of measure 0 null sets, ”a subset of a nullset should also
be a null set”. It turns out that this is true for the σ-field generated by the
intervals and the null sets together. These are called the Lebesgue measurable
sets, L. This process of including all subsets of null sets as null sets always
works, and is called completion. Thus L is the completion of B.

The measure µ obtained on L from (L) in this way is called Lebesgue
measure; L is the natural domain of definition of µ.

Of course, the real line R has infinite Lebesgue measure (= length). But,
it often suffices in Analysis, and even more in Probability, so work with the

1



unit interval [0, 1]. Then ([0, 1],L, λ), where L here denotes the Lebesgue-
measurable subsets of [0, 1] and µ Lebesgue measure on them, is called the
Lebesgue probability space (see below).
Measurable functions; integrals. If f is a function from a measurable space
(Ω,A) to the reals (R,B), one calls f measurable if

f−1(B) ∈ A for all B ∈ B

– that is, inverse images of Borel sets are measurable.
These are the ‘nice’ functions, and we may restrict ourselves to them.
A (measurable) function of the form

f =
n∑

i=1

ciI(ai,bi]

is called a simple function. We can define the integral
∫
fdµ of a simple

function with respect to the measure µ by∫
fdµ :=

n∑
i=1

ciµ((ai, bi])

when this is finite; we then say that f is µ-integrable, and write f ∈ L1(µ)
(L for Lebesgue; 1 for the first power, f). When it is +∞,

∫
fdµ is undefined

and f is not µ-integrable.
It turns out that a non-negative measurable function f is always the

increasing limit of simple functions fn, and that∫
fdµ := lim

n→∞

∫
fndµ

defines
∫
fdµ uniquely (there are many such increasing sequences fn, but

they all give the same limit above).
Writing

x+ := max(x, 0), x− := −min(x, 0)

for the positive part and negative part of x, we may check that

|x| = x+ + x−, x = x+ − x−.

We can extend the definition above from non-negative measurable functions
to general measurable functions by linearity:∫

fdµ :=
∫

f+dµ−
∫
f−dµ.
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Of course, this only holds when both integrals on the right are defined (are
finite). So then ∫

|f |dµ =
∫

f+dµ+
∫
f−dµ.

Thus f is µ-integrable iff |f | is: the (measure-theoretic) integral here is an
absolute integral, as we saw before. Also, the integral is easily seen to be
linear: if f, g ∈ L1(µ) and a, b are constants, then af + bg ∈ L1(µ) and∫

(af + bg)dµ = a
∫

fdµ+ b
∫
gdµ.

As one might suspect from the definition above, one can change the values
of f on a µ-null set without changing the value of

∫
fdµ. So: we are really

dealing here with, not individual functions f themselves, but equivalence
classes, under the equivalence relation

f ≡ g iff f = g µ− a.e.,

where ‘µ-a.e.’ (‘µ-almost everywhere’ means ‘except on a µ-null set’).
For us, our (positive) measure (or integrator) µ, a set-function, will be

obtained from a (non-decreasing) point function (which to save letters we
also write µ), vanishing at some reference point x0, by

µ((a, b]) = µ(b)− µ(a). (LS)

The LS here is for Lebesgue-Stieltjes (the µ on the left is a LS measure, that
on the right is a LS measure function). Thus for Lebesgue measure µ(x) ≡ x
and x0 = 0; for probability measures P , the point function is the distribution
function (below), and x0 = −∞.
Random variables. When the measure space is a probability space (Ω,A, P ),
we call the sets A ∈ A events. These are the sets A whose probabilities P (A)
are defined (this is consistent, both with ordinary speech and with usage in
one’s first exposure to Probability). We call a measurable function a random
variable. In this case, we will use notation such as X, Y etc. rather than f, g
etc. We call

∫
ΩXdP the expectation of X, E[X]:

E[X] :=
∫
Ω
XdP.

By above, the expectation is linear:

E[aX + bY ] = aE[X] + bE[Y ].
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Note. We need an absolute integral, as here, to get linearity of expectation.
Without the restriction that E[X] exists iff E[|X|] exists, linearity of the
expectation may fail. Recall from Analysis: absolutely convergent sums,
integrals etc. may be rearranged at will. Conditionally convergent sums,
integrals etc. are very dangerous: they result from ‘cancelling infinities’.
Note also that a+ b makes sense, not just for real numbers a and b, but for
one or both of a or b +∞ (then their sum is also +∞); similarly for −∞.
But we must avoid the meaningless symbol ”∞ − ∞”. In much the same
way, we must avoid the meaningless ”0/0”, as we know from Calculus.
Distribution functions. If X is a random variable (measurable function), the
inverse image X−1(B) ∈ A for all Borel sets B – equivalently, this holds for
all B in some set that generates the Borel σ-field B. The half-lines (−∞, x]
(x ∈ R) form such a set. SoX is a random variable (rv) iffX−1((−∞, x]) ∈ A
for each x, that is, {X ≤ x} ∈ A (is an event), that is, iff

F (x) := P ({X ≤ x})

is defined. Now the function F here (or FX , if we need to distinguish between
FX and FY say) is called the (probability) distribution function (or just dis-
tribution, or d/n fn) is defined: X is a random variable iff its distribution
function is defined.
Densities. If for some function f ≥ 0 one has

F (x) := P ({X ≤ x}) =
∫ x

−∞
f(u)du (x ∈ R),

one calls f the (probability) density (function) of F , or X. Call this the
density case, and such F absolutely continuous (SP L7). Then f ≥ 0 corre-
sponds to F non-decreasing. Then F ′(x) = f(x), but only a.e. (SP L7).
Example: the uniform distribution U [0, 1]. On the Lebesgue probability
space, U is a uniformly distributed random variable:

P (U ∈ (a, b]) = b− a (0 ≤ a ≤ b ≤ 1)

(‘probability = length’). This has distribution and density functions

F (x) = 0 (x ≤ 0), x (0 ≤ x ≤ 1), 1 (x ≥ 1); f(x) = I[0,1](x).

Here F fails to be differentiable at the end-points 0 and 1 of the support
interval [0, 1] – but this exceptional set is of measure 0.
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