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Lecture 26. 6.12.2012 (half-hour: Problems)

This gives us an easy way, in the persistent case, to tell the two sub-cases
of null and positive apart. If j is null,

un,j → 0,

while if j is positive,
un,j → 1/µj > 0

(in the aperiodic case, with a similar statement in the periodic case). This
will be useful below. It also explains the terms null and positive.

We introduce one more term (the motivation is from Physics, specifically
Statistical Mechanics, to which we return later). A state is called ergodic if
it is aperiodic and positive recurrent (= persistent).

When a chain is irreducible (so each state can be reached from every
other state, eventually), we quote that all states have the same character: all
aperiodic/periodic with the same period, all transient, all recurrent, all null,
all positive, or all ergodic. Results of this type are called solidarity theorems;
we shall assume them. We then call an irreducible chain aperiodic etc. if all
its states are.
3. Limit distributions and invariant (= stationary) distributions

Recall that the transition probability matrix P of a Markov chain has
row-sums 1. This means that if we post-multiply P by the column-vector 1
all of whose elements are 1,

P1 = 1.

This says that 1 is an eigenvalue, with right eigenvector 1.
It turns out that this eigenvalue is special, and that the long-term be-

haviour of the chain is dominated by the eigenstructure of P . The key result
is the following classical theorem, which (perhaps surprisingly) is a result of
Linear Algebra. It is due to Oskar PERRON (1880-1975) in 1907 and Georg
FROBENIUS (1849-1917) in 1908 and 1912.

Theorem (Perron-Frobenius Theorem). Let P be the transition prob-
ability matrix of a finite irreducible Markov chain with period d.
(i) λ1 = 1 is always an eigenvalue of P ; if d > 1, so too are the other dth
roots of unity, λ2 = ω, . . . , λd = ωd−1, where ω := exp{2πi/d}.
(ii) All other eigenvalues λj have modulus |λj| < 1.
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The eigenvalue (e-value) 1 is called the Perron-Frobenius (PF) e-value.
For proof of the PF theorem, see e.g. [HJ], 8.4, [Sen].

Theorem. In an ergodic chain (not necessarily finite):
(i) there exists

lim
n→∞

p
(n)
ij = πj,

independent of i.
(ii) πj > 0, and

∑
πj = 1.

(iii) πj =
∑

i πipij for each j, or writing π for the row-vector of the πj,

π = πP.

Thus π is the left eigenvector for the Perron-Frobenius eigenvalue 1.
Conversely, if (ii), (iii) hold for an irreducible periodic chain, (i) holds,

with πk = 1/µk, µk the mean recurrence time of state k, and the chain is
ergodic.

Proof. Pij(s) = Fij(s)Pjj(s). By the Erdös-Feller-Pollard theorem,

p
(n)
jj → πj = 1/µj (n → ∞),

and πj > 0 as µj < ∞ (the states are positive, as the chain is ergodic). So if

fij = Fij(1) = Pi(reach j),

p
(n)
ij ∼ fijp

(n)
jj → fijπj.

But here fij = 1 as the chain is irreducible (each state is accessible from
every other), so

p
(n)
ij → πj (n → ∞)

for each i, proving (i). Now

1 =
∞∑
j=1

p
(n)
ij ≥

N∑
j=1

p
(n)
ij

for each N . Let n → ∞:

1 ≥
N∑
j=1

πj,

for each N .
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