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Lecture 3. 11.10.2012 (half-hour:problems)

3. Distributions and distribution functions
The distribution function F (x) := P (X ≤ x) of X is a Lebesgue-Stieltjes

measure function; it determines the corresponding Lebesgue-Stieltjes mea-
sure by (denoting this also by F to save letters – µF is the other common
notation)

F ((a, b]) = F (b)− F (a)

(and hence we can extend from such intervals to general Borel sets). Now

F (x) = P (X ≤ x) = P (X ∈ (−∞, x]) = P (X−1(−∞, x]),

or (taking a = −∞, b = x above)

F ((−∞, x]) = P (X−1(−∞, x]).

Extending as above,
F (B) = P (X−1(B))

for any Borel set B. We may write the RHS as the composite (P ◦ X)(B).
We thus then have

F = P ◦X−1 :

F , the distribution of X, is the image measure of the probability measure P
under the inverse map X−1 (or more briefly, ‘under X’).
Expectations

In Lecture 2, we defined E[X] as
∫
Ω XdP , and similarly E[g(X)] =∫

Ω g(X)dP , for Borel measurable g.
In your first course on Probability and/or Statistics, you defined

E[g(X)] :=
∫ ∞

−∞
g(x)dF (x),

at least in the two main cases:∫ ∞

−∞
g(x)f(x)dx (density case, density f);

∑
n

g(xn)f(xn) (discrete case)

(we now know that there is no need to handle these separately, we can handle
them together – and, that we must restrict to the case of absolute convergence
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in all sums and integrals).
It seems that we now have two different ways of defining E[g(X)] – as a

P -integral over the sample space Ω or as an F -integral over the line. As one
might expect, these two are the same. This follows from the transformation
formula for integrals in Measure Theory; see SP L7.
The discrete case.

If X takes (finitely or) countably many values xn, write

f(xn) := P (X = xn) (n = 1, 2, . . .).

Then the distribution function

F (x) =
∑

n:xn≤x

f(xn)

is a jump-function, increasing by f(xn) at xn and constant elsewhere.
The Lebesgue decomposition.

The discrete and density cases are not exhaustive – though they are all
one usually encounters in practice in Statistics. We quote: the general dis-
tribution function F has a Lebesgue decomposition

F = cacFac + cdFd + csFs,

where the constants ci are non-negative and sum to 1 (the RHS is called a
mixture), Fac is an absolutely continuous distribution, Fd is a discrete dis-
tribution (with density f , say), and Fs is a continuous singular distribution
(no jumps, but increases only on a Lebesgue-null set). We will not encounter
such Fs in practice, so we do not discuss them further.

This reduces the number of components on the right to two. Actually, we
will only encounter one at a time here – usually the density case (see below)
Discrete v. continuous.

Statistics is dominated by the density case: normal, chi-square, Student
t, Fisher F , uniform, exponential, Gamma, Beta etc. But the discrete case
also occurs – e.g., the Poisson distribution. The density case corresponds
to measurement data, the discrete case to count data. Mathematically, the
density case involves integrals, the discrete case sums. We have chosen our
notation f(.) to fit both cases. This is more than a formal analogy: dis-
tributions with densities are absolutely continuous w.r.t. Lebesgue measure;
discrete ones are absolutely continuous w.r.t. counting measure (SP L4).
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