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Lecture 4. 16.10.2012
Higher dimensions; joint and marginal distributions

If X =(Xy,...,X,) is a random variable taking values in n-dimensional
space — a random n-vector — then its distribution function F' is defined as
above, but coordinatewise. If x = (x1,...,2,), y = (Y1, ..., Yn), We write
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Then
F(z):=P(X <z)=P(X; <zy,...,X;, < x,).

This is also called the joint distribution of (Xj,...,X,), while

is called the marginal distribution of X;. Note that letting the jth argument
x; — 00 eliminates the condition X; < x;, and so leaves the joint distribution
of the Xs with X; omitted. So the joint distribution of a random vector
determines the joint distribution of any subvector, and the marginals of its
coordinates, just by letting unwanted arguments go to +oo. In sum: the
joint determines the marginals.

Probability Integral Transformation (PIT).

As F is non-decreasing, it has an inverse function. We use

F~(z) :=inf{z: F(z) >t} = min{x : F(x) >t}

(also non-decreasing, but left-continuous — so the infinum is attained, i.e.
is a minimum). Write X ~ F to mean that the random variable X has
distribution F'. Then if U|0, 1] is the uniform distribution above (probability
= length) and U ~ U|[0, 1], then U is uniformly distributed on [0, 1]; we shall
use this standard notation below. The Probability Integral Transformation
(PIT) uses U and F to generate X:

X :=F1U)~F (PIT).

Proof.
P(X =F'(U)<a)=PU < F(2)) = F(x). //

The PIT is very useful in the context of Simulation (using computers to
generate random numbers); see IS, I and p.2. It means that we only need
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random number tables for the uniform distribution U]0, 1], and can then use
(PIT) to transform this data to have distribution F'.
Copulas

The question arises of how to go in the reverse direction. It is helpful to
think of the information in the joint distribution as composed of two parts:
one on the marginals, the other on the dependence between the coordinates —
often of great statistical importance! One needs a function that couples the
marginals together to form the joint. This is called the copula.

A copula C in n dimensions is a probability distribution function on (=
supported by — all its probability mass is on) the unit n-cube [0, 1]™.
Sklar’s Theorem (A. SKLAR, 1958). If F(x) is a joint distribution in n
dimensions, with marginals F;(x;), there exists an n-dimensional copula C'
with

F(z) = F(z1,...,2,) = C(Fi(z1), ..., F.(xy)).

Conversely, given any copula C' and marginals F;, this formula gives a joint
distribution F' with marginals F;. The correspondence between F' and C' is
unique if the marginals F; are continuous.
Absolute continuity and the Radon-Nikodym theorem

In the density case,

F(z)= P(X <) = / Flu)du
In the discrete case,

Flz)=P(X <z)= > f(za)

n:xy <x

Each expresses a relationship between measures. In the density case, the
measures are F' and A\, Lebesgue measure:

AMB)=0 = F(B)=0.

In the discrete case, the measures are F' and counting measure on the set of
values {n : x,} (think of z,, = n, say). In general: if P, Q) are measures, we
say @ is absolutely continuous w.r.t. P, written Q) << P, if

P(A)=0 =Q(A) =
Then the Radon-Nikodym theorem states that @ << P iff
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for some measurable function f, called the Radon-Nikodym (RN) derivative
of Q@ wrt. P, written f = d@Q/dP. Thus each of the fs above is a RN
derivative. See e.g. SP L7, or [S] Ch. 19.

II. DISTRIBUTIONS AND THEIR TRANSFORMS
1. Examples.
1. Uniform Ula,b]. This has density

f(z)=1/(b—a) (a <z <b), 0 otherwise
and distribution
F(z)=0 (x <a), (x—a)/(b—a) (a <z <b), 1 (x >b).

The case U[0, 1] is basic — we have met this in I, and seen how to get any
other distribution from it by the Probability Integral Transformation.
Ula,b] forms a two-parameter family. It is statistically interesting, as
maximum-likelihood estimation (MLE) of its parameters is non-regular: in-
stead of getting a normal limit and convergence rate y/n as usual, we get a
symmetric exponential limit and convergence rate n; see e.g. IS II. This is
typical of situations, as here, where the support (smallest set carrying full
probability, 1) depends on the parameters.
2. Ezponential E()\), A > 0. This has density

f(z) = Ae ™ (x >0), 0 (x <0)
and distribution
Flz)=1—e (x >0), 0 (x <0).

Here the mean is E[X] = 1/X\. MLE is regular, and the MLE \ = 1/Z, as
one would expect (sample mean Z corresponds to population mean 1/)).
3. Normal N(u,0?); u real, o > 0. Here the density is

P P Y

Ha) = — 5

This is a density, and (as the notation suggests) it does indeed have mean p
and variance o2 [I1.3 Example la, L7].
The case 4 = 0,0 = 1, the standard normal distribution N(0, 1), is so
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important it has special notation: the density and distribution function are

written
1

ola) = = exp{—5")
O(x) = /x o(u)du = \/12_7r /_xoo eXp{—;uQ}du.

—00

Note that ®(0) = 3 by symmetry (and ®(—o0) = 0, $(c0) = 1); for other
values, we have to use tables.
The MLEs for the population mean and variance are the sample mean

and variance:

p=X, 02=5(= Tllz(xk — X?)).
1

Note that we use the ”1/n” definition of the sample variance (so that ”bar, or
average, corresponds to expectation”, rather than the alternative ”1/(n—1)”
definition (to get the sample variance unbiased). Always check!

4. Chi-square with n degrees of freedom (df ), x*(n). This is the distribution of
X?+...4+ X2 where X,..., X, are independent and identically distributed
(iid) N(0,1). It has density

1

r)=—F—
(AT
mean n and variance 2n; see e.g. [BF], S2.1.

We quote (see e.g. [BF], Th. 2.4):

(i) X and S? are independent; (ii) X ~ N(u,0?/n); (iii) nS?/0? ~ x*(n—1).
5. Student t-distribution with n df, t(n). This is defined as the distribution
of

n—

1
22! exp{—iw} (x > 0),

X :=+/nU/ VvV ,
where U ~ N(0,1), V ~ x*(n) and U, V are independent. It has distribution
L(in+1) 2%\ ~1(n+1)
0= )
By above,
Vn—1(X —p)/S ~tn—1).
This is very useful when estimating the mean p without knowing the variance

o? (or standard deviation — SD — ¢): the nuisance parameter o cancels on
forming the Student ¢ ratio above.



